Menu Close

bemath-lim-x-2-3x-1-4x-2-




Question Number 107028 by bemath last updated on 08/Aug/20
   @bemath@  lim_(x→∞)  (2+3x)^(1/(4x−2))
@bemath@limx(2+3x)14x2
Commented by kaivan.ahmadi last updated on 08/Aug/20
y=(2+3x)^(1/(4x−2)) ⇒lny=((ln(2+3x))/(4x−2))⇒lim_(x→∞) lny=  lim_(x→∞) ((ln(2+3x))/(4x−2))∼lim_(x→∞) (3/(4(2+3x)))=0  ⇒lim_(x→∞) y=e^0 =1
y=(2+3x)14x2lny=ln(2+3x)4x2limxlny=limxln(2+3x)4x2limx34(2+3x)=0limxy=e0=1
Answered by Dwaipayan Shikari last updated on 08/Aug/20
y=lim_(x→∞) (2+3x)^(1/(4x−2))   logy=lim_(x→∞) ((log(2+3x))/(4x−2))=lim_(x→∞) (3/(4(2+3x)))=0  y=e^0 =1
y=limx(2+3x)14x2logy=limxlog(2+3x)4x2=limx34(2+3x)=0y=e0=1
Answered by john santu last updated on 08/Aug/20
     @JS@  lim_(x→∞) (2+3x)^(1/(4x−2))  =lim_(x→∞) (1+(1/(((1/(3x+1))))))^(1/(4x−2))   = [lim_(x→∞) (1+(1/(((1/(3x+1))))))^(3x+1) ]^(1/((3x+1)(4x−2)))   = e^(lim_(x→∞) ((1/((3x+1)(4x−2))))) = e^0 =1
@JS@limx(2+3x)14x2=limx(1+1(13x+1))14x2=[limx(1+1(13x+1))3x+1]1(3x+1)(4x2)=elimx(1(3x+1)(4x2))=e0=1
Answered by mathocean1 last updated on 08/Aug/20
=> let 2+3x=a.  lim_(x→∞ )  a^(1/(4(∞)−2)) =lim_(x→∞)  a^0 =lim_(x→∞)  1=1      “ocean”
=>let2+3x=a.limxa14()2=limxa0=limx1=1ocean

Leave a Reply

Your email address will not be published. Required fields are marked *