Menu Close

bemath-lim-x-pi-2-1-sin-x-cos-x-




Question Number 111528 by bemath last updated on 04/Sep/20
   (√(bemath))    lim_(x→π/2) (1−sin x)^(cos x)  ?
bemathlimxπ/2(1sinx)cosx?
Answered by bobhans last updated on 04/Sep/20
let 1−sin x = w ; where w→0 and sin x=1−w  cos x = (√(1−(1−2w+w^2 ))) = (√(2w−w^2 ))  L= lim_(w→0)  (w)^(√(2w−w^2 ))    ln L = lim_(w→0)  (√(2w−w^2 )) ln (w)  ln L = lim_(w→0)  ((ln (w))/((2w−w^2 )^(−(1/2)) ))  ln L= lim_(w→0)  ((1/w)/(−(1/2)(2−2w)(2w−w^2 )^(−(3/2)) ))  ln L = lim_(w→0)  ((−(2w−w^2 )^(3/2) )/(w−w^2 ))  ln L = lim_(w→0)  ((−(3/2)(2−2w)(√(2w−w^2 )))/(1−2w)) = 0  ∴ L = e^0  = 1
let1sinx=w;wherew0andsinx=1wcosx=1(12w+w2)=2ww2L=limw0(w)2ww2lnL=limw02ww2ln(w)lnL=limw0ln(w)(2ww2)12lnL=limw01w12(22w)(2ww2)32lnL=limw0(2ww2)32ww2lnL=limw032(22w)2ww212w=0L=e0=1
Answered by Dwaipayan Shikari last updated on 04/Sep/20
lim_(x→(π/2)) (1−sinx)^(cosx) =y  cosxlog(1−sinx)=logy  (1/2)(−2cosxsinx((log(1−sinx))/(−sinx)))=logy  (1/2)(−sin2x)=logy  logy=0  y=1
limxπ2(1sinx)cosx=ycosxlog(1sinx)=logy12(2cosxsinxlog(1sinx)sinx)=logy12(sin2x)=logylogy=0y=1
Answered by 1549442205PVT last updated on 04/Sep/20
I=  lim_(x→(π/2)) (1−sin x)^(cos x)    lnI=lim_(x→(π/2)) [cosxln(1−sinx)]  =lim_(x→(π/2)) ((ln(1−sinx))/(1/(cosx)))=lim_(x→(π/2)) (((1/(1−sinx))×(−cosx))/((sinx)/(cos^2 x)))  (Since  lim_(x→(π/2)) ((ln(1−sinx))/(1/(cosx)))=(∞/∞))⇒using L′Hopital  =lim_(x→(π/2)) ((−cos^3 x)/((1−sinx)sinx))=lim_(x→π/2) ((3cos^2 xsinx)/((1−sinx)cosx−cosxsinx))  =lim_(x→(π/2)) ((3cosxsinx)/(1−2sinx))=(0/(−1))=0⇒I=e^0 =1
I=limxπ2(1sinx)cosxlnI=limxπ2[cosxln(1sinx)]=limxπ2ln(1sinx)1cosx=limxπ211sinx×(cosx)sinxcos2x(Sincelimxπ2ln(1sinx)1cosx=)usingLHopital=limxπ2cos3x(1sinx)sinx=limxπ/23cos2xsinx(1sinx)cosxcosxsinx=limxπ23cosxsinx12sinx=01=0I=e0=1

Leave a Reply

Your email address will not be published. Required fields are marked *