bemath-lim-x-pi-2-1-sin-x-cos-x- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 111528 by bemath last updated on 04/Sep/20 bemathlimx→π/2(1−sinx)cosx? Answered by bobhans last updated on 04/Sep/20 let1−sinx=w;wherew→0andsinx=1−wcosx=1−(1−2w+w2)=2w−w2L=limw→0(w)2w−w2lnL=limw→02w−w2ln(w)lnL=limw→0ln(w)(2w−w2)−12lnL=limw→01w−12(2−2w)(2w−w2)−32lnL=limw→0−(2w−w2)32w−w2lnL=limw→0−32(2−2w)2w−w21−2w=0∴L=e0=1 Answered by Dwaipayan Shikari last updated on 04/Sep/20 limx→π2(1−sinx)cosx=ycosxlog(1−sinx)=logy12(−2cosxsinxlog(1−sinx)−sinx)=logy12(−sin2x)=logylogy=0y=1 Answered by 1549442205PVT last updated on 04/Sep/20 I=limx→π2(1−sinx)cosxlnI=limx→π2[cosxln(1−sinx)]=limx→π2ln(1−sinx)1cosx=limx→π211−sinx×(−cosx)sinxcos2x(Sincelimx→π2ln(1−sinx)1cosx=∞∞)⇒usingL′Hopital=limx→π2−cos3x(1−sinx)sinx=limx→π/23cos2xsinx(1−sinx)cosx−cosxsinx=limx→π23cosxsinx1−2sinx=0−1=0⇒I=e0=1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-45992Next Next post: Question-45994 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.