Menu Close

bemath-lim-x-pi-4-x-pi-cos-2-x-pi-pi-2x-cos-x-pi-2-




Question Number 106771 by bemath last updated on 07/Aug/20
       @bemath@  lim_(x→π) [((4(x−π) cos^2 x)/(π(π−2x) cos (x−(π/2))))]= ?
@bemath@limxπ[4(xπ)cos2xπ(π2x)cos(xπ2)]=?
Commented by bemath last updated on 07/Aug/20
Answered by john santu last updated on 07/Aug/20
       ^(@JS@)   lim_(x→π)  [((cos^2  x)/(π(π−2x)))] × lim_(x→π)  ((4(x−π))/(cos (x−(π/2))))=  (((−1)^2 )/(−π^2 )) × lim_(x→π)  (4/(−sin (x−(π/2)))) =  (1/π^2 ) × 4 = (4/π^2 ) .  (by L′Hopital′s rule)
@JS@limxπ[cos2xπ(π2x)]×limxπ4(xπ)cos(xπ2)=(1)2π2×limxπ4sin(xπ2)=1π2×4=4π2.(byLHopitalsrule)
Answered by Dwaipayan Shikari last updated on 07/Aug/20
lim_(x→π) ((4cos^2 x)/(π(π−2x))) (((x−π))/(cos(x−(π/2))))  lim_(x→π) −(4/π^2 ) ((x−π)/(cos((π/2)−x)))=lim_(x→0) ((−4)/π^2 ). ((x−π)/(sinx))  =lim_(x→π) (4/π^2 ).((π−x)/(sin(π−x)))=(4/π^2 )
limxπ4cos2xπ(π2x)(xπ)cos(xπ2)limxπ4π2xπcos(π2x)=limx04π2.xπsinx=limxπ4π2.πxsin(πx)=4π2

Leave a Reply

Your email address will not be published. Required fields are marked *