Menu Close

bemath-log-2x-1-2-x-1-1-x-log-2x-1-2-x-2-1-1-x-2-




Question Number 106996 by bemath last updated on 10/Aug/20
       @bemath@  log _(∣2x−(1/2)∣) (x+1+(1/x))≥log _(∣2x−(1/2)∣) (x^2 +1+(1/x^2 ))
@bemath@log2x12(x+1+1x)log2x12(x2+1+1x2)
Commented by bemath last updated on 10/Aug/20
thank you
thankyou
Answered by bobhans last updated on 10/Aug/20
      ∔bobhans∔  log _(∣2x−(1/2)∣) (x+1+(1/x)) ≥ log _(∣2x−(1/2)∣) (x^2 +1+(1/x^2 ))   { ((x+1+(1/x)>0)),((x^2 +1+(1/x^2 )>0)),((∣2x−(1/2)∣>0)) :}   ⇒ { ((x>0)),((x≠0)),((x≠(1/4))) :}  ⇒((x^3 +x−x^4 −1)/((2x−(3/2))(2x+(1/2)))) ≥ 0 ...(×(−1)  ⇔ (((x+1+(1/x))−(x^2 +1+(1/x^2 )))/(∣2x−(1/2)∣−1)) ≥ 0...(×x^2 )  ⇒((x^3 +x−x^4 −1)/((2x−(3/2))(2x+(1/2)))) ≥ 0 ...(×(−1)  ⇒((x^4 −x^3 −x+1)/((2x−(3/2))(2x+(1/2)))) ≤ 0...(×(2x+(1/2)))  ⇒(((x−1)(x^3 −1))/((2x−(3/2)))) ≤ 0   ⇒(((x−1)^2 (x^2 +x+1))/((2x−(3/2)))) ≤0 ; x^2 +x+1 >0 ∀x∈R  ⇒(((x−1)^2 )/((2x−(3/2)))) ≤ 0 ⇒solution   x∈(0, (1/4)) ∪ ((1/4),(3/4)) ∪ {1}
bobhanslog2x12(x+1+1x)log2x12(x2+1+1x2){x+1+1x>0x2+1+1x2>02x12∣>0{x>0x0x14x3+xx41(2x32)(2x+12)0(×(1)(x+1+1x)(x2+1+1x2)2x1210(×x2)x3+xx41(2x32)(2x+12)0(×(1)x4x3x+1(2x32)(2x+12)0(×(2x+12))(x1)(x31)(2x32)0(x1)2(x2+x+1)(2x32)0;x2+x+1>0xR(x1)2(2x32)0solutionx(0,14)(14,34){1}

Leave a Reply

Your email address will not be published. Required fields are marked *