Menu Close

bemath-sin-14-cos-14-tan-38-1-




Question Number 111002 by bemath last updated on 01/Sep/20
(√(bemath))  ⇒ sin 14°+cos 14°tan 38°−1=?
$$\sqrt{\mathrm{bemath}} \\ $$$$\Rightarrow\:\mathrm{sin}\:\mathrm{14}°+\mathrm{cos}\:\mathrm{14}°\mathrm{tan}\:\mathrm{38}°−\mathrm{1}=? \\ $$
Commented by Khanacademy last updated on 01/Sep/20
αbeMath_uz   sizning  kanalingizmi
$$\alpha\boldsymbol{{beMath\_uz}}\:\:\:\boldsymbol{{sizning}}\:\:\boldsymbol{{kanalingizmi}} \\ $$
Answered by som(math1967) last updated on 01/Sep/20
 ((sin14cos38+cos14sin38)/(cos38))−1  =((sin(38+14))/(cos38)) −1  =((sin52)/(sin(90−38))) −1  =((sin52)/(sin52)) −1=1−1=0ans
$$\:\frac{\mathrm{sin14cos38}+\mathrm{cos14sin38}}{\mathrm{cos38}}−\mathrm{1} \\ $$$$=\frac{\mathrm{sin}\left(\mathrm{38}+\mathrm{14}\right)}{\mathrm{cos38}}\:−\mathrm{1} \\ $$$$=\frac{\mathrm{sin52}}{\mathrm{sin}\left(\mathrm{90}−\mathrm{38}\right)}\:−\mathrm{1} \\ $$$$=\frac{\mathrm{sin52}}{\mathrm{sin52}}\:−\mathrm{1}=\mathrm{1}−\mathrm{1}=\mathrm{0ans} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *