Menu Close

BeMath-sin-6-x-cos-6-x-7-16-x-0-pi-2-




Question Number 107534 by bemath last updated on 11/Aug/20
   ⊨BeMath⊨   sin^6 x + cos^6 x = (7/(16)) ; x ∈ (0,(π/2))
BeMathsin6x+cos6x=716;x(0,π2)
Commented by hgrocks last updated on 11/Aug/20
7 and 16 both my favorite numbers ����
Commented by bemath last updated on 11/Aug/20
thank you all sir
thankyouallsir
Answered by Rio Michael last updated on 11/Aug/20
(sin^2  x + cos^2 x)^3  = (sin^2 x + cos^2 x)(sin^2 x + cos^2 x)(sin^2 x + cos^2 x)                                     = (sin^4 x + 2sin^2 x cos^2 x + cos^4 x)(sin^2 x + cos^2 x)                                     = sin^6 x + sin^4 x cos^2 x + 2sin^4 x cos^2 x  + 2sin^2 x cos^4 x + sin^2 x cos^4 x + cos^6 x                      = sin^6 x + cos^6 x + 3sin^4  xcos^2 x + 3 sin^2 x cos^4 x  ⇒ 1 − 3 sin^4 x cos^2 x −3 sin^2  x cos^4 x = sin^6 x + cos^6 x  ⇒   sin^6  x + cos^6  x = 1−3sin^2 x cos^2  x( sin^2 x + cos^2 x)                                  = 1− (3/4) sin^2  2x  ⇒1 − (3/4) sin^2  2x = (7/(16)) ; x ∈(0,(π/2))   −(3/4) sin^2 2x = −(9/(16))  or  sin^2 2x = (3/4)  ⇒ sin 2x = ((√3)/2) or  2x = πn + (−1)^n (π/3)   x = ((πn)/2) + (−1)^n (π/6)   n = 0, x = (π/6)  n = 1, x = (π/3)  n = 2, x = out of range given ⇒ solution set S = {(π/6),(π/3)}
(sin2x+cos2x)3=(sin2x+cos2x)(sin2x+cos2x)(sin2x+cos2x)=(sin4x+2sin2xcos2x+cos4x)(sin2x+cos2x)=sin6x+sin4xcos2x+2sin4xcos2x+2sin2xcos4x+sin2xcos4x+cos6x=sin6x+cos6x+3sin4xcos2x+3sin2xcos4x13sin4xcos2x3sin2xcos4x=sin6x+cos6xsin6x+cos6x=13sin2xcos2x(sin2x+cos2x)=134sin22x134sin22x=716;x(0,π2)34sin22x=916orsin22x=34sin2x=32or2x=πn+(1)nπ3x=πn2+(1)nπ6n=0,x=π6n=1,x=π3n=2,x=outofrangegivensolutionsetS={π6,π3}
Answered by Dwaipayan Shikari last updated on 11/Aug/20
(sin^2 x+cos^2 x)^3 −3sin^2 xcos^2 x(sin^2 x+cos^2 x)=(7/(16))  1−3cos^2 xsin^2 x=(7/(16))  cos^2 xsin^2 x=(3/(16))  4cos^2 xsin^2 x=(3/4)  sin^2 2x=(3/4)  sin2x=±((√3)/2)  x=πk±(π/3)  x=((πk)/2)±(π/6)       (k∈Z)   { ((x=(π/6))),((x=(π/3))) :}
(sin2x+cos2x)33sin2xcos2x(sin2x+cos2x)=71613cos2xsin2x=716cos2xsin2x=3164cos2xsin2x=34sin22x=34sin2x=±32x=πk±π3x=πk2±π6(kZ){x=π6x=π3
Answered by Sarah85 last updated on 11/Aug/20
s^6 +(1−s^2 )^(6/2) =7/16  s^4 −s^2 +3/16=0  sin x =±(√3)/2∨±1/2  x=π/6∨x=π/3
s6+(1s2)6/2=7/16s4s2+3/16=0sinx=±3/2±1/2x=π/6x=π/3
Answered by john santu last updated on 11/Aug/20
      ⋇JS⋇  sin^6 x+cos^6 x=(sin^2 x)^3 +(cos^2 x)^3   =(sin^2 x+cos^2 x)^3 −3sin^2 x cos^2 x(sin^2 x+cos^2 x)  =1−(3/4)sin^2 2x   (⊸)(7/(16)) = 1−(3/4)sin^2 2x  7 = 16−12sin^2 2x ⇒12sin^2 2x−9=0  ⇒sin 2x = ± (3/(2(√3))) =± ((√3)/2)  case(1) ⇒sin 2x = sin 60° ; x=30°                        2x=180°−60°+k.360°                          x = 60°+k.180° ; x=60°  case(2)sin 2x=sin (−60°)  x=−30°+k.180° ; x = 150°  (ignoring)  Therefore the solution   x=30° ; 60°
JSsin6x+cos6x=(sin2x)3+(cos2x)3=(sin2x+cos2x)33sin2xcos2x(sin2x+cos2x)=134sin22x()716=134sin22x7=1612sin22x12sin22x9=0sin2x=±323=±32case(1)sin2x=sin60°;x=30°2x=180°60°+k.360°x=60°+k.180°;x=60°case(2)sin2x=sin(60°)x=30°+k.180°;x=150°(ignoring)Thereforethesolutionx=30°;60°
Answered by Her_Majesty last updated on 11/Aug/20
sin^6 x+cos^6 x−(7/(16))=0  (3/8)cos4x+(3/(16))=0  cos4x=−(1/2)  x=((nπ)/2)±(π/6)  in the given interval we get  x=(π/6) or x=(π/3)
sin6x+cos6x716=038cos4x+316=0cos4x=12x=nπ2±π6inthegivenintervalwegetx=π6orx=π3

Leave a Reply

Your email address will not be published. Required fields are marked *