Menu Close

BeMath-Suppose-2x-3-3x-2-14x-5-Px-Q-x-3-x-1-R-for-all-value-of-x-Find-the-value-of-P-Q-and-R-




Question Number 108888 by bemath last updated on 20/Aug/20
   ((⋮BeMath⋮)/△)  Suppose 2x^3 +3x^2 −14x−5= (Px+Q)(x+3)(x+1)+R for all  value of x. Find the value of P,Q and R
$$\:\:\:\frac{\vdots\mathcal{B}{e}\mathcal{M}{ath}\vdots}{\bigtriangleup} \\ $$$${Suppose}\:\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{14}{x}−\mathrm{5}=\:\left({Px}+{Q}\right)\left({x}+\mathrm{3}\right)\left({x}+\mathrm{1}\right)+{R}\:{for}\:{all} \\ $$$${value}\:{of}\:{x}.\:{Find}\:{the}\:{value}\:{of}\:{P},{Q}\:{and}\:{R}\: \\ $$
Answered by Rasheed.Sindhi last updated on 20/Aug/20
 ⟩_• ^• ∣_• ^• ⟨_• ^•  Comparing Coefficients    2x^3 +3x^2 −14x−5          = (Px+Q)(x+3)(x+1)+R           =Px^3 +(4P+Q)x^2 +(3P+4Q)x+3Q+R  Comparing coefficients:  P=2, 4P+Q=3,3P+4Q=−14  3Q+R=−5  Q=3−4P=3−4(2)=−5  Q=−5,R=−5−3Q=−5−3(−5)  R=10                         _(⋘• )^(⋙ •) Rasheed_( •⋘) ^(  •⋙)
$$\:\underset{\bullet} {\overset{\bullet} {\rangle}}\underset{\bullet} {\overset{\bullet} {\mid}}\underset{\bullet} {\overset{\bullet} {\langle}}\:\mathrm{Comparing}\:\mathrm{Coefficients}\:\: \\ $$$$\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{14}{x}−\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:=\:\left({Px}+{Q}\right)\left({x}+\mathrm{3}\right)\left({x}+\mathrm{1}\right)+{R}\: \\ $$$$\:\:\:\:\:\:\:\:={Px}^{\mathrm{3}} +\left(\mathrm{4}{P}+{Q}\right){x}^{\mathrm{2}} +\left(\mathrm{3}{P}+\mathrm{4}{Q}\right){x}+\mathrm{3}{Q}+{R} \\ $$$${Comparing}\:{coefficients}: \\ $$$${P}=\mathrm{2},\:\mathrm{4}{P}+\mathrm{Q}=\mathrm{3},\mathrm{3}{P}+\mathrm{4}{Q}=−\mathrm{14} \\ $$$$\mathrm{3}{Q}+{R}=−\mathrm{5} \\ $$$${Q}=\mathrm{3}−\mathrm{4}{P}=\mathrm{3}−\mathrm{4}\left(\mathrm{2}\right)=−\mathrm{5} \\ $$$${Q}=−\mathrm{5},{R}=−\mathrm{5}−\mathrm{3}{Q}=−\mathrm{5}−\mathrm{3}\left(−\mathrm{5}\right) \\ $$$${R}=\mathrm{10}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:_{\lll\bullet\:} ^{\ggg\:\bullet} {Rasheed}_{\:\bullet\lll} ^{\:\:\bullet\ggg} \\ $$
Commented by bemath last updated on 20/Aug/20
cooll ...nice
$${cooll}\:…{nice} \\ $$
Answered by bobhans last updated on 20/Aug/20
put x = −1 →R=−2+3+14−5=10  then 2x^3 +3x^2 −14x−5=(Px+Q)(x+3)(x+1)+10  (Px+Q)(x+3)(x+1)=2x^3 +3x^2 −14x−15  divided by x+1 in RHS we got factorise  (x+1)(2x^2 +x−15)=(x+1)(2x −5)(x+3)  so we obtain → { ((P = 2)),((Q=−5)) :}
$${put}\:{x}\:=\:−\mathrm{1}\:\rightarrow{R}=−\mathrm{2}+\mathrm{3}+\mathrm{14}−\mathrm{5}=\mathrm{10} \\ $$$${then}\:\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{14}{x}−\mathrm{5}=\left({Px}+{Q}\right)\left({x}+\mathrm{3}\right)\left({x}+\mathrm{1}\right)+\mathrm{10} \\ $$$$\left({Px}+{Q}\right)\left({x}+\mathrm{3}\right)\left({x}+\mathrm{1}\right)=\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{14}{x}−\mathrm{15} \\ $$$${divided}\:{by}\:{x}+\mathrm{1}\:{in}\:{RHS}\:{we}\:{got}\:{factorise} \\ $$$$\left({x}+\mathrm{1}\right)\left(\mathrm{2}{x}^{\mathrm{2}} +{x}−\mathrm{15}\right)=\left({x}+\mathrm{1}\right)\left(\mathrm{2}{x}\:−\mathrm{5}\right)\left({x}+\mathrm{3}\right) \\ $$$${so}\:{we}\:{obtain}\:\rightarrow\begin{cases}{{P}\:=\:\mathrm{2}}\\{{Q}=−\mathrm{5}}\end{cases} \\ $$
Commented by bemath last updated on 20/Aug/20
cooll...★
$${cooll}…\bigstar \\ $$
Answered by Rasheed.Sindhi last updated on 20/Aug/20
     S_(⊂) ^(∩) yntheic Division method_∪ ^⊃    g(x):2x^3 +3x^2 −14x−5        = (Px+Q)(x+3)(x+1)+R  g(x) on dividing by x+1 gives   remainder R and quotient q(x):   determinant (((−1)),2,(    3),(−14),(−5)),(,,(−2),(   −1),(  15)),(,2,(    1),(−15),(  10^(R=) )))  q(x)=2x^2 +x−15 , R=10  q(x) on dividing by x+3 gives  remainder 0 and quotient Px+Q   determinant (((−3)),2,(    1),(−15)),(,,(−6),(+15)),(,2^(P=) ,(−5^(Q=) ),(       0)))  Px+Q=2x−5  P=2, Q=−5
$$\:\:\:\:\:\underset{\subset} {\overset{\cap} {\mathrm{S}}yntheic}\:\mathrm{Division}\:\mathrm{metho}\underset{\cup} {\overset{\supset} {\mathrm{d}}} \\ $$$$\:{g}\left({x}\right):\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{14}{x}−\mathrm{5} \\ $$$$\:\:\:\:\:\:=\:\left({Px}+{Q}\right)\left({x}+\mathrm{3}\right)\left({x}+\mathrm{1}\right)+{R} \\ $$$${g}\left({x}\right)\:{on}\:{dividing}\:{by}\:{x}+\mathrm{1}\:{gives}\: \\ $$$${remainder}\:{R}\:{and}\:{quotient}\:{q}\left({x}\right): \\ $$$$\begin{vmatrix}{\left.−\mathrm{1}\right)}&{\mathrm{2}}&{\:\:\:\:\mathrm{3}}&{−\mathrm{14}}&{−\mathrm{5}}\\{}&{}&{−\mathrm{2}}&{\:\:\:−\mathrm{1}}&{\:\:\mathrm{15}}\\{}&{\mathrm{2}}&{\:\:\:\:\mathrm{1}}&{−\mathrm{15}}&{\:\:\overset{{R}=} {\mathrm{10}}}\end{vmatrix} \\ $$$${q}\left({x}\right)=\mathrm{2}{x}^{\mathrm{2}} +{x}−\mathrm{15}\:,\:{R}=\mathrm{10} \\ $$$${q}\left({x}\right)\:{on}\:{dividing}\:{by}\:{x}+\mathrm{3}\:{gives} \\ $$$${remainder}\:\mathrm{0}\:{and}\:{quotient}\:{Px}+{Q} \\ $$$$\begin{vmatrix}{\left.−\mathrm{3}\right)}&{\mathrm{2}}&{\:\:\:\:\mathrm{1}}&{−\mathrm{15}}\\{}&{}&{−\mathrm{6}}&{+\mathrm{15}}\\{}&{\overset{{P}=} {\mathrm{2}}}&{\overset{{Q}=} {−\mathrm{5}}}&{\:\:\:\:\:\:\:\mathrm{0}}\end{vmatrix} \\ $$$${Px}+{Q}=\mathrm{2}{x}−\mathrm{5} \\ $$$${P}=\mathrm{2},\:{Q}=−\mathrm{5} \\ $$
Commented by Rasheed.Sindhi last updated on 20/Aug/20
Both steps can be mixed:   determinant (((−1)),2,(    3),(−14),(−5)),(,,(−2),(   −1),(  15)),((−3)),2,(    1),(−15),(  ⟨10^(R=) ⟩)),(,,(−6),(+15),),(,2^(P=) ,(−5^(Q=) ),(     ⟨0⟩),))
$${Both}\:{steps}\:{can}\:{be}\:{mixed}: \\ $$$$\begin{vmatrix}{\left.−\mathrm{1}\right)}&{\mathrm{2}}&{\:\:\:\:\mathrm{3}}&{−\mathrm{14}}&{−\mathrm{5}}\\{}&{}&{−\mathrm{2}}&{\:\:\:−\mathrm{1}}&{\:\:\mathrm{15}}\\{\left.−\mathrm{3}\right)}&{\mathrm{2}}&{\:\:\:\:\mathrm{1}}&{−\mathrm{15}}&{\:\:\langle\overset{{R}=} {\mathrm{10}}\rangle}\\{}&{}&{−\mathrm{6}}&{+\mathrm{15}}&{}\\{}&{\overset{{P}=} {\mathrm{2}}}&{\overset{{Q}=} {−\mathrm{5}}}&{\:\:\:\:\:\langle\mathrm{0}\rangle}&{}\end{vmatrix} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *