Menu Close

BeMath-Suppose-2x-3-3x-2-14x-5-Px-Q-x-3-x-1-R-for-all-value-of-x-Find-the-value-of-P-Q-and-R-




Question Number 108888 by bemath last updated on 20/Aug/20
   ((⋮BeMath⋮)/△)  Suppose 2x^3 +3x^2 −14x−5= (Px+Q)(x+3)(x+1)+R for all  value of x. Find the value of P,Q and R
BeMathSuppose2x3+3x214x5=(Px+Q)(x+3)(x+1)+Rforallvalueofx.FindthevalueofP,QandR
Answered by Rasheed.Sindhi last updated on 20/Aug/20
 ⟩_• ^• ∣_• ^• ⟨_• ^•  Comparing Coefficients    2x^3 +3x^2 −14x−5          = (Px+Q)(x+3)(x+1)+R           =Px^3 +(4P+Q)x^2 +(3P+4Q)x+3Q+R  Comparing coefficients:  P=2, 4P+Q=3,3P+4Q=−14  3Q+R=−5  Q=3−4P=3−4(2)=−5  Q=−5,R=−5−3Q=−5−3(−5)  R=10                         _(⋘• )^(⋙ •) Rasheed_( •⋘) ^(  •⋙)
ComparingCoefficients2x3+3x214x5=(Px+Q)(x+3)(x+1)+R=Px3+(4P+Q)x2+(3P+4Q)x+3Q+RComparingcoefficients:P=2,4P+Q=3,3P+4Q=143Q+R=5Q=34P=34(2)=5Q=5,R=53Q=53(5)R=10Rasheed
Commented by bemath last updated on 20/Aug/20
cooll ...nice
coollnice
Answered by bobhans last updated on 20/Aug/20
put x = −1 →R=−2+3+14−5=10  then 2x^3 +3x^2 −14x−5=(Px+Q)(x+3)(x+1)+10  (Px+Q)(x+3)(x+1)=2x^3 +3x^2 −14x−15  divided by x+1 in RHS we got factorise  (x+1)(2x^2 +x−15)=(x+1)(2x −5)(x+3)  so we obtain → { ((P = 2)),((Q=−5)) :}
putx=1R=2+3+145=10then2x3+3x214x5=(Px+Q)(x+3)(x+1)+10(Px+Q)(x+3)(x+1)=2x3+3x214x15dividedbyx+1inRHSwegotfactorise(x+1)(2x2+x15)=(x+1)(2x5)(x+3)soweobtain{P=2Q=5
Commented by bemath last updated on 20/Aug/20
cooll...★
cooll
Answered by Rasheed.Sindhi last updated on 20/Aug/20
     S_(⊂) ^(∩) yntheic Division method_∪ ^⊃    g(x):2x^3 +3x^2 −14x−5        = (Px+Q)(x+3)(x+1)+R  g(x) on dividing by x+1 gives   remainder R and quotient q(x):   determinant (((−1)),2,(    3),(−14),(−5)),(,,(−2),(   −1),(  15)),(,2,(    1),(−15),(  10^(R=) )))  q(x)=2x^2 +x−15 , R=10  q(x) on dividing by x+3 gives  remainder 0 and quotient Px+Q   determinant (((−3)),2,(    1),(−15)),(,,(−6),(+15)),(,2^(P=) ,(−5^(Q=) ),(       0)))  Px+Q=2x−5  P=2, Q=−5
SyntheicDivisionmethodg(x):2x3+3x214x5=(Px+Q)(x+3)(x+1)+Rg(x)ondividingbyx+1givesremainderRandquotientq(x):|1)231452115211510R=|q(x)=2x2+x15,R=10q(x)ondividingbyx+3givesremainder0andquotientPx+Q|3)21156+152P=5Q=0|Px+Q=2x5P=2,Q=5
Commented by Rasheed.Sindhi last updated on 20/Aug/20
Both steps can be mixed:   determinant (((−1)),2,(    3),(−14),(−5)),(,,(−2),(   −1),(  15)),((−3)),2,(    1),(−15),(  ⟨10^(R=) ⟩)),(,,(−6),(+15),),(,2^(P=) ,(−5^(Q=) ),(     ⟨0⟩),))
Bothstepscanbemixed:|1)2314521153)211510R=6+152P=5Q=0|

Leave a Reply

Your email address will not be published. Required fields are marked *