Menu Close

bemath-What-is-m-so-the-roots-of-x-4-m-2-x-2-9-0-are-in-AP-




Question Number 106880 by bemath last updated on 07/Aug/20
           ^(@bemath@)   What is m so the roots of x^4  −(m+2)x^2 +9=0  are in AP
@bemath@Whatismsotherootsofx4(m+2)x2+9=0areinAP
Commented by Her_Majesty last updated on 07/Aug/20
so the roots of ... what? this doesn′t make  sense, it′s not a full sentence
sotherootsofwhat?thisdoesntmakesense,itsnotafullsentence
Commented by bemath last updated on 07/Aug/20
yes..you are right
yes..youareright
Answered by john santu last updated on 07/Aug/20
      ^(◊JS⧫)   say the roots are η , η+d, η+2d,  η+3d  By Vieta′s rule    { ((4η+6d = 0 → d=−(2/3)η)),((η(η+d)(η+2d)(η+3d)=9)) :}  ⇒η(η−(2/3)η)(η−(4/3)η)(η−(6/3)η)=9  η((1/3)η)(−(1/3)η)(−η)=9  η^4 =81 → { ((η=3)),((η=−3)) :}  case(1) for η=3  substute to quartic equation  ⇒3^4 −(m+2)3^2 +9=0  9−(m+2)+1=0 ⇒m=8  case(2) for η=−3  ⇒equal to η=3   therefore the value of m is 8.
JSsaytherootsareη,η+d,η+2d,η+3dByVietasrule{4η+6d=0d=23ηη(η+d)(η+2d)(η+3d)=9η(η23η)(η43η)(η63η)=9η(13η)(13η)(η)=9η4=81{η=3η=3case(1)forη=3substutetoquarticequation34(m+2)32+9=09(m+2)+1=0m=8case(2)forη=3equaltoη=3thereforethevalueofmis8.
Commented by Her_Majesty last updated on 07/Aug/20
how do you know what is asked?  coffee cup reading? telepathy?
howdoyouknowwhatisasked?coffeecupreading?telepathy?
Commented by john santu last updated on 07/Aug/20
by feeling
byfeeling
Answered by 1549442205PVT last updated on 07/Aug/20
The equation  x^4  −(m+2)x^2 +9=0  has roots establish an AP  if and only if  two following conditions  is satisfied:(set y=t^2 )  i)y^2 −(m+2)y^2 −(m+2)y+9=0(∗)    has two positive roots y_1 ,y_2 .Since  y_1 y_2 =9>0 ,this is equavalent to     { ((Δ=(m+2)^2 −36>0)),((y_1 +y_2 =m+2>0)) :}⇔ { ((m^2 +4m−32>0)),((m+2>0)) :}  ⇔ { ((((m−4)(m+8)>0)),((m+2>0)) :}⇔ { ((m∈(−∞;−8)∪(4;+∞))),((m>−2)) :}  ⇔m∈(4;+∞)(∗∗)  ii)Suppose that y_1 <y_2  and x_1 ,x_2 ,x_3 ,x_4   establish an arithmetic progression   consecutively.Then we have:  x_1 =−(√y_2 ) ,x_2 =−(√y_1 ) ,x_3 =(√y_1 ) ,x_4 =(√y_2 )  x_2 −x_1 =x_3 −x_2 =x_4 −x_3 =d  ⇒ { ((2x_2 =x_1 +x_3 )),((2x_3 =x_2 +x_4 )) :}⇔ { ((4x_2 =2x_1 +2x_3 )),((2x_3 =x_2 +x_4 )) :}  ⇒Adding up we get 4x_2 =2x_1 +x_2 +x_4   ⇔3x_2 =x_(1 ) (since x_1 +x_4 =x_2 +x_3 =0)(1)  .On ther other hands,  by Vieta′s theorem we have:  y_1 +y_2 =m+2=x_2 ^2 +x_1 ^2 =x_3 ^2 +x_4 ^4 (2)  y_1 y_2 =9=(x_1 x_2 )^2 =(x_3 x_4 )^2   ⇔x_1 x_2 =x_3 x_4 =3.From (1)we get  3x_2 ^2 =3⇒x_2 ^2 =1⇒x_2 =−1⇒x_1 =−3  Replace into (2) we obtain:m+2=10  ⇒m=8.This value satisfy the condition(∗∗)  Consequently,The equation  x^4  −(m+2)x^2 +9=0  has roots establish an arithmetic  progression if an only if m=8
Theequationx4(m+2)x2+9=0hasrootsestablishanAPifandonlyiftwofollowingconditionsissatisfied:(sety=t2)i)y2(m+2)y2(m+2)y+9=0()hastwopositiverootsy1,y2.Sincey1y2=9>0,thisisequavalentto{Δ=(m+2)236>0y1+y2=m+2>0{m2+4m32>0m+2>0{((m4)(m+8)>0m+2>0{m(;8)(4;+)m>2m(4;+)()ii)Supposethaty1<y2andx1,x2,x3,x4establishanarithmeticprogressionconsecutively.Thenwehave:x1=y2,x2=y1,x3=y1,x4=y2x2x1=x3x2=x4x3=d{2x2=x1+x32x3=x2+x4{4x2=2x1+2x32x3=x2+x4Addingupweget4x2=2x1+x2+x43x2=x1(sincex1+x4=x2+x3=0)(1).Ontherotherhands,byVietastheoremwehave:y1+y2=m+2=x22+x12=x32+x44(2)y1y2=9=(x1x2)2=(x3x4)2x1x2=x3x4=3.From(1)weget3x22=3x22=1x2=1x1=3Replaceinto(2)weobtain:m+2=10m=8.Thisvaluesatisfythecondition()Consequently,Theequationx4(m+2)x2+9=0hasrootsestablishanarithmeticprogressionifanonlyifm=8
Answered by $@y@m last updated on 08/Aug/20
Let the roots be  a−3d, a−d,a+d,a+3d  Then,  4a=0   & (−3d)(−d)(d)(3d)=9  ⇒ a=0 & d=1  ∴ the roors are  −3, −1, 1 & 3  Now, −(m+2)={(−3)+(−1)}.(1+3)+3+3   ⇒m+2=−16+6   m=8  OR,  The equation whose roots are  −3, −1, 1 & 3 is  (x^2 −9)(x^2 −1)=0  ⇒x^4 −10x^2 +9=0  Equating the coefficient ofx^2 , we get  m+2=10⇒m=8
Lettherootsbea3d,ad,a+d,a+3dThen,4a=0&(3d)(d)(d)(3d)=9a=0&d=1theroorsare3,1,1&3Now,(m+2)={(3)+(1)}.(1+3)+3+3m+2=16+6m=8OR,Theequationwhoserootsare3,1,1&3is(x29)(x21)=0x410x2+9=0Equatingthecoefficientofx2,wegetm+2=10m=8
Commented by Rasheed.Sindhi last updated on 08/Aug/20
V Nice!
VNice!VNice!
Commented by $@y@m last updated on 08/Aug/20
Thanks!
Thanks!Thanks!

Leave a Reply

Your email address will not be published. Required fields are marked *