BeMath-x-2-ln-x-2-3-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 107756 by bemath last updated on 12/Aug/20 BeMath∐∫x2ln(x2+3)dx Answered by hgrocks last updated on 12/Aug/20 I=ln(x2+3)x33−23∫x4x2+3dx→JJ=∫x4−9+9x2+3dx=∫(x2−3)dx+9∫dxx2+3=x33−3x+93tan−1(x3)SoI=x39(3ln(x2+3)−2)+2(x−3tan−1(x3)) Answered by bobhans last updated on 12/Aug/20 ⊺Bobhans⊺Πsetln(x2+3)=u⇒2xx2+3dx=duv=13x3I=13x3ln(x2+3)−13∫2x4(x2+3)dxI=13x3ln(x2+3)−23∫x4x2+3dxI=13x3ln(x2+3)−23∫(x2+3)2−6x2−9x2+3dxI=13x3ln(x2+3)−23∫((x2+3)−6(x2+3)+9x2+3)dxI=13x3ln(x2+3)−23[13x3+3x−6x+∫9x2+3dx]I=13x3ln(x2+3)−29x3+2x−23tan−1(x3)+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Number-of-straight-lines-which-satisfy-the-differential-equation-dy-dx-x-dy-dx-2-y-0-is-Next Next post: let-f-x-e-x-2pi-periodic-even-developp-f-at-fourier-serie- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.