Menu Close

BeMath-x-2-ln-x-2-3-dx-




Question Number 107756 by bemath last updated on 12/Aug/20
 ((BeMath)/∐)   ∫ x^2  ln (x^2 +3) dx
BeMathx2ln(x2+3)dx
Answered by hgrocks last updated on 12/Aug/20
  I = ln(x^2 +3)(x^3 /3) − (2/3)∫(x^4 /(x^2 +3)) dx  → J  J = ∫ ((x^4 −9 + 9)/(x^2  + 3)) dx   = ∫(x^2  − 3)dx  + 9 ∫(dx/(x^2  + 3))   = (x^3 /3) −3x + (9/( (√3))) tan^(−1) ((x/( (√3))))  So I = (x^3 /9)(3 ln(x^2 +3) − 2) + 2(x −(√3)tan^(−1) ((x/( (√3)))))
I=ln(x2+3)x3323x4x2+3dxJJ=x49+9x2+3dx=(x23)dx+9dxx2+3=x333x+93tan1(x3)SoI=x39(3ln(x2+3)2)+2(x3tan1(x3))
Answered by bobhans last updated on 12/Aug/20
      ((⊺Bobhans⊺)/Π)  set ln (x^2 +3) = u ⇒ ((2x)/(x^2 +3)) dx = du         v = (1/3)x^3           I=(1/3)x^3  ln (x^2 +3)−(1/3)∫ ((2x^4 )/((x^2 +3))) dx    I=(1/3)x^3  ln (x^2 +3)−(2/3) ∫(x^4 /(x^2 +3)) dx  I=(1/3)x^3  ln (x^2 +3)−(2/3)∫ (((x^2 +3)^2 −6x^2 −9)/(x^2 +3))dx  I=(1/3)x^3  ln (x^2 +3)−(2/3)∫ ((x^2 +3)−((6(x^2 +3)+9)/(x^2 +3)))dx  I=(1/3)x^3  ln (x^2 +3)−(2/3)[(1/3)x^3 +3x−6x+∫(9/(x^2 +3))dx]  I=(1/3)x^3  ln (x^2 +3)−(2/9)x^3 +2x−2(√3) tan^(−1) ((x/( (√3))))+C
BobhansΠsetln(x2+3)=u2xx2+3dx=duv=13x3I=13x3ln(x2+3)132x4(x2+3)dxI=13x3ln(x2+3)23x4x2+3dxI=13x3ln(x2+3)23(x2+3)26x29x2+3dxI=13x3ln(x2+3)23((x2+3)6(x2+3)+9x2+3)dxI=13x3ln(x2+3)23[13x3+3x6x+9x2+3dx]I=13x3ln(x2+3)29x3+2x23tan1(x3)+C

Leave a Reply

Your email address will not be published. Required fields are marked *