Menu Close

BeMath-x-4-1-x-4-23-x-3-1-x-3-




Question Number 107945 by bemath last updated on 13/Aug/20
      ((○BeMath○)/(∧⌣∧))      { ((x^4 +(1/x^4 ) = 23)),((x^3 −(1/x^3 ) = ?)) :}
BeMath{x4+1x4=23x31x3=?
Answered by $@y@m last updated on 13/Aug/20
(x^2 +(1/x^2 ))^2 −2=23  (x^2 +(1/x^2 ))^2 =25  x^2 +(1/x^2 )=5  x^2 +(1/x^2 )−2=3  (x−(1/x))^2 =3  x−(1/x)=(√3)  (x−(1/x))^3 =3(√3)  x^3 −(1/x^3 )−3(x−(1/x))=3(√3)  x^3 −(1/x^3 )−3(√3)=3(√3)  x^3 −(1/x^3 )=6(√3)
(x2+1x2)22=23(x2+1x2)2=25x2+1x2=5x2+1x22=3(x1x)2=3x1x=3(x1x)3=33x31x33(x1x)=33x31x333=33x31x3=63
Commented by Rasheed.Sindhi last updated on 13/Aug/20
  Nice!
Nice!
Commented by Her_Majesty last updated on 13/Aug/20
nice but also −6(√3) is a solution
nicebutalso63isasolution
Commented by bemath last updated on 13/Aug/20
yes sir. the answer ± 6(√3)
yessir.theanswer±63
Answered by 1549442205PVT last updated on 13/Aug/20
x^4 +(1/x^4 ) = 23⇔(x^2 +(1/x^2 ))^2 =25  ⇔x^2 +(1/x^2 )=±5  i)x^2 +(1/x^2 )=5⇔(x−(1/x))^2 =3⇔x−(1/x)=±(√3)  a)x−(1/x)=(√3) ⇒x^3 −(1/x^3 )=(x−(1/x))^3 +3(x−(1/x))  =3(√3)+3(√3)=6(√3)  b)x−(1/x)=−(√3)⇒x^3 −(1/x^3 )=(−(√3))^3 +3.(−(√3))  =−6(√3)  ii)x^2 +(1/x^2 )=−5⇒(x−(1/x))^2 =−7  ⇒x−(1/x)=±i(√7)  c)x−(1/x)=i(√7)⇒x^3 −(1/x^3 )=(i(√7))^3 +3i(√7)  =−7i(√7)+3i(√7)=−4i(√7)  d)x−(1/x)=−i(√7)⇒x^3 −(1/x^3 )=(−i(√7))^3 −3i(√7)  =7i(√7)−3i(√7)=4i(√7)  Thus,we get four answers follows as:  x^3 −(1/x^3 )∈{6(√3);−6(√3);4i(√7);−4i(√7)}
x4+1x4=23(x2+1x2)2=25x2+1x2=±5i)x2+1x2=5(x1x)2=3x1x=±3a)x1x=3x31x3=(x1x)3+3(x1x)=33+33=63b)x1x=3x31x3=(3)3+3.(3)=63ii)x2+1x2=5(x1x)2=7x1x=±i7c)x1x=i7x31x3=(i7)3+3i7=7i7+3i7=4i7d)x1x=i7x31x3=(i7)33i7=7i73i7=4i7Thus,wegetfouranswersfollowsas:x31x3{63;63;4i7;4i7}
Answered by Rasheed.Sindhi last updated on 13/Aug/20
An uncommon way_↘ ^↗ →      { ((x^4 +(1/x^4 ) = 23)),((x^3 −(1/x^3 ) = ?)) :}  (x^4 +(1/x^4 ))^3 =(23)^3   x^(12) +(1/x^(12) )+3(x^4 +(1/x^4 ))=23^3   x^(12) +(1/x^(12) )=23^3 −3(23)=12098  (x^6 +(1/x^6 ))^2 −2=12098  (x^6 +(1/x^6 ))^2 =12100  x^6 +(1/x^6 )=±110  x^6 +(1/x^6 )−2=±110−2  (x^3 −(1/x^3 ))^2 =108,112  x^3 −(1/x^3 )=±6(√3) ,±4(√7)          ⟨⋊_↙ ^↖  sindhi_↘ ^↗  ⋉⟩_(↓) ^(↑)   _ ^
Anuncommonway↘↗{x4+1x4=23x31x3=?(x4+1x4)3=(23)3x12+1x12+3(x4+1x4)=233x12+1x12=2333(23)=12098(x6+1x6)22=12098(x6+1x6)2=12100x6+1x6=±110x6+1x62=±1102(x31x3)2=108,112x31x3=±63,±47↙↖sindhi↘↗
Commented by bemath last updated on 13/Aug/20
cooll
cooll

Leave a Reply

Your email address will not be published. Required fields are marked *