Menu Close

bemath-x-6-1-x-2-dx-




Question Number 107212 by bemath last updated on 09/Aug/20
   ⊚bemath⊚  ∫ x^6  (√(1−x^2 )) dx ?
bemathx61x2dx?
Answered by Ar Brandon last updated on 09/Aug/20
I=∫x^6 (√(1−x^2 ))dx , x=sinθ  I=∫sin^6 θcos^2 θdθ=∫(sin^6 θ−sin^8 θ)dθ  (z−(1/z))^6 =(2isinθ)^6  , z=cosθ+isinθ  z^6 −6z^5 ((1/z))+15z^4 ((1/z^2 ))−20z^3 ((1/z^3 ))+15z^2 ((1/z^4 ))−6z((1/z^5 ))+(1/z^6 )=−64sin^6 θ  z^6 +(1/z^6 )−6(z^4 +(1/z^4 ))+15(z^2 +(1/z^2 ))−20=−64sin^6 θ  2cos6θ−12cos4θ+30cos2θ−20=−64sin^6 θ  (z−(1/z))^8 =(2isinθ)^8   1 7 21 35 35 21 7 1   1 8 28 56 70 56 28 8 1   z^8 +(1/z^8 )−8(z^6 +(1/z^6 ))+28(z^4 +(1/z^4 ))−56(z^2 +(1/z^2 ))+70=256sin^8 θ  2cos8θ−16cos6θ+56cos4θ−112cos2θ+70=256sin^8 θ  ⇒I=−(1/(64))[(2/6)sin6θ−((12)/4)sin4θ+((30)/2)sin2θ−20θ]              −(1/(256))[(2/8)sin8θ−((16)/6)sin6θ+((56)/4)sin4θ−((112)/2)sin2θ+70θ]+C  I=(1/(256))[10θ−4sin2θ−2sin4θ+(4/3)sin6θ−(1/4)sin8θ]+C
I=x61x2dx,x=sinθI=sin6θcos2θdθ=(sin6θsin8θ)dθ(z1z)6=(2isinθ)6,z=cosθ+isinθz66z5(1z)+15z4(1z2)20z3(1z3)+15z2(1z4)6z(1z5)+1z6=64sin6θz6+1z66(z4+1z4)+15(z2+1z2)20=64sin6θ2cos6θ12cos4θ+30cos2θ20=64sin6θ(z1z)8=(2isinθ)817213535217118285670562881z8+1z88(z6+1z6)+28(z4+1z4)56(z2+1z2)+70=256sin8θ2cos8θ16cos6θ+56cos4θ112cos2θ+70=256sin8θI=164[26sin6θ124sin4θ+302sin2θ20θ]1256[28sin8θ166sin6θ+564sin4θ1122sin2θ+70θ]+CI=1256[10θ4sin2θ2sin4θ+43sin6θ14sin8θ]+C
Answered by bobhans last updated on 09/Aug/20
I_1 =∫− (1/2)x^5 (−2x(√(1−x^2 )))dx = ∫−(1/2)x^5 (√(1−x^2 ))d(1−x^2 )  I_1 = −(1/2)x^5 ((2/3)(1−x^2 )^(3/2) )+∫(5/3)x^4 (1−x^2 )^(3/2) dx  I_2 =∫−(5/6)x^3 (−2x(1−x^2 )^(3/2) )dx  I_2 = ∫−(5/6)x^3  (1−x^2 )^(3/2)  d(1−x^2 )  I_2 =−(1/3)x^3  (1−x^2 )^(5/2) +∫x^2 (1−x^2 )^(5/2)  dx  I_3 =∫ −(1/2)x (−2x(1−x^2 )^(5/2) )dx  I_3 = −(1/2)x.(2/7)(1−x^2 )^(7/2) +∫(1/7)(1−x^2 )^(7/2)   I_3 = −(1/7)x(1−x^2 )^(7/2) +∫(1/7)(1−x^2 )^(7/2)  dx
I1=12x5(2x1x2)dx=12x51x2d(1x2)I1=12x5(23(1x2)3/2)+53x4(1x2)3/2dxI2=56x3(2x(1x2)3/2)dxI2=56x3(1x2)3/2d(1x2)I2=13x3(1x2)5/2+x2(1x2)5/2dxI3=12x(2x(1x2)5/2)dxI3=12x.27(1x2)7/2+17(1x2)7/2I3=17x(1x2)7/2+17(1x2)7/2dx
Answered by 1549442205PVT last updated on 10/Aug/20
Set (1/x^2 )−1=u^2 ⇒2udu=−(2/x^3 )dx  ⇒dx=−ux^3 du,(√(1−x^2 ))=ux,x^2 =(1/(u^2 +1))  F=−∫x^6 .(ux)(ux^3 )du=−∫x^(10) u^2 du  =−∫((u^2 du)/((1+u^2 )^5 ))=−∫((u^2 +1−1)/((u^2 +1)^5 ))du  =−∫(du/((1+u^2 )^4 ))+∫(du/((1+u^2 )^5 ))=I_5 −I_4     Apply the current formula:  I_n =(1/(2a^2 (n−1))).(t/((t^2 +a^2 )^(n−1) ))+(1/a^2 ).((2n−3)/(2n−2)).I_(n−1)   I_4 =(1/6).(u/((u^2 +1)^3 ))+(5/6)I_3 =  (u/(6(u^2 +1)^3 ))+(5/6)[(1/4).(u/((u^2 +1)^2 ))+(3/4).I_2 ]  =(u/(6(u^2 +1)^3 ))+((5u)/(24(u^2 +1)^2 ))+(5/8)I_2   =(u/(6(u^2 +1)^3 ))+((5u)/(24(u^2 +1)^2 ))+(5/8)[(1/2).(u/((u^2 +1)))+(1/2)∫(du/(u^2 +1))]  =(u/(6(u^2 +1)^3 ))+((5u)/(24(u^2 +1)^2 ))+((5u)/(16(u^2 +1)))+(5/(16))tan^(−1) (u)  I_5 =(1/8).(u/((u^2 +1)^4 ))+(7/8).I_4 .Therefore,  F=I_5 −I_4 =(1/8).(u/((u^2 +1)^4 ))−(1/8)I_4   =(u/(8(u^2 +1)^4 ))−(1/8)[(u/(6(u^2 +1)^3 ))+((5u)/(24(u^2 +1)^2 ))+((5u)/(16(u^2 +1)))+(5/(16))tan^(−1) (u)]+C  =(u/(8(u^2 +1)^4 ))−(u/(48(u^2 +1)^3 ))−((5u)/(192(u^2 +1)^2 ))   −((5u)/(128(u^2 +1)))−(5/(128))tan^(−1) (u)+C  Substituting u^2 +1=1/x^2 and u=((√(1−x^2 ))/x)  we get:  F=((x^7 (√(1−x^2 )))/8)−((x^5 (√(1−x^2 )))/(48))−((5x^3 (√(1−x^2 )))/(192))  −((5x(√(1−x^2 )))/(128))−(5/(128))tan^(−1) (((√(1−x^2 ))/x)) +C
Set1x21=u22udu=2x3dxdx=ux3du,1x2=ux,x2=1u2+1F=x6.(ux)(ux3)du=x10u2du=u2du(1+u2)5=u2+11(u2+1)5du=du(1+u2)4+du(1+u2)5=I5I4Applythecurrentformula:In=12a2(n1).t(t2+a2)n1+1a2.2n32n2.In1I4=16.u(u2+1)3+56I3=u6(u2+1)3+56[14.u(u2+1)2+34.I2]=u6(u2+1)3+5u24(u2+1)2+58I2=u6(u2+1)3+5u24(u2+1)2+58[12.u(u2+1)+12duu2+1]=u6(u2+1)3+5u24(u2+1)2+5u16(u2+1)+516tan1(u)I5=18.u(u2+1)4+78.I4.Therefore,F=I5I4=18.u(u2+1)418I4=u8(u2+1)418[u6(u2+1)3+5u24(u2+1)2+5u16(u2+1)+516tan1(u)]+C=u8(u2+1)4u48(u2+1)35u192(u2+1)25u128(u2+1)5128tan1(u)+CSubstitutingu2+1=1/x2andu=1x2xweget:F=x71x28x51x2485x31x21925x1x21285128tan1(1x2x)+C
Answered by mathmax by abdo last updated on 10/Aug/20
A =∫ x^6 (√(1−x^2 ))dx we do the changement x =sint ⇒  A =∫ sin^6 t cos^2 t  dt  =∫ (sin^2 t)^3 (((1+cos(2t))/2))dt  =(1/2)∫ (((1−cos(2t))/2))^3 (1+cos(2t))dt  =(1/(16)) ∫ (1−cos(2t))^2 (1−cos^2 (2t))dt  =(1/(16)) ∫ (1−2cos(2t)+cos^2 (2t))(1−((1+cos(4t))/2))dt  =(1/(32))∫ (((1+cos(4t))/2)+1−2cos(2t))(1−cos(4t))dt  =(1/(64))∫ (3+cos(4t)−4cos(2t))(1−cos(4t))dt  =(1/(64))∫ (3−3cos(4t)+cos(4t)−cos^2 (4t)−4cos(2t)+4cos(2t)cos(4t))dt  =(1/(64))∫ (3−2cos(4t)−((1+cos(8t))/2)−4cos(2t)+2{cos(6t) +cos(2t)})dt  =(1/(128))∫  {6−4cos(4t)−1−cos(8t)−8cos(2t)+4cos(6t)+4cos(2t)}dt  =(1/(128)) ∫ {5 −4cos(4t)−cos(8t)−4cos(2t)+4cos(6t)}dt  =(5/(128))t −(4/(128))∫ cos(4t)dt−(1/(128))∫ cos(8t)dt−(4/(128))∫ cos(2t)dt  +(4/(128))∫ cos(6t)dt  =(5/(128))t −(1/(128))sin(4t)−(1/(8.128))sin(8t)−(1/(64)) sin(2t) +(4/(6.128))sin(6t) +C  t =arcsinx
A=x61x2dxwedothechangementx=sintA=sin6tcos2tdt=(sin2t)3(1+cos(2t)2)dt=12(1cos(2t)2)3(1+cos(2t))dt=116(1cos(2t))2(1cos2(2t))dt=116(12cos(2t)+cos2(2t))(11+cos(4t)2)dt=132(1+cos(4t)2+12cos(2t))(1cos(4t))dt=164(3+cos(4t)4cos(2t))(1cos(4t))dt=164(33cos(4t)+cos(4t)cos2(4t)4cos(2t)+4cos(2t)cos(4t))dt=164(32cos(4t)1+cos(8t)24cos(2t)+2{cos(6t)+cos(2t)})dt=1128{64cos(4t)1cos(8t)8cos(2t)+4cos(6t)+4cos(2t)}dt=1128{54cos(4t)cos(8t)4cos(2t)+4cos(6t)}dt=5128t4128cos(4t)dt1128cos(8t)dt4128cos(2t)dt+4128cos(6t)dt=5128t1128sin(4t)18.128sin(8t)164sin(2t)+46.128sin(6t)+Ct=arcsinx

Leave a Reply

Your email address will not be published. Required fields are marked *