Menu Close

BeMath-x-dx-x-8-1-




Question Number 108073 by bemath last updated on 14/Aug/20
    ((≜BeMath≜)/≺)    ∫ ((x dx)/(x^8 −1)) ?
BeMathxdxx81?
Answered by john santu last updated on 14/Aug/20
    ((□JS⊡)/≢)  I= ∫ ((x dx)/(x^8 −1))   set x^2  = z ⇒ 2x dx = dz   I= (1/2)∫ (dz/(z^4 −1)) = (1/2)∫ (dz/((z^2 −1)(z^2 +1)))  I=(1/4)∫[ (1/(z^2 −1))−(1/(z^2 +1))] dz  I=(1/8)∫( (1/(z−1))−(1/(z+1)))dz−(1/4)tan^(−1) (z)+c  I=(1/8)ln ∣((z−1)/(z+1))∣−(1/4)tan^(−1) (z)+c  I=(1/8)ln ∣((x^2 −1)/(x^2 +1))∣−(1/4)tan^(−1) (x^2 )+c
◻JSI=xdxx81setx2=z2xdx=dzI=12dzz41=12dz(z21)(z2+1)I=14[1z211z2+1]dzI=18(1z11z+1)dz14tan1(z)+cI=18lnz1z+114tan1(z)+cI=18lnx21x2+114tan1(x2)+c
Commented by bemath last updated on 14/Aug/20
waw...cooll
wawcooll
Answered by malwaan last updated on 14/Aug/20
∫(x/(x^8 −1))dx=(1/2)∫ ((d(x^2 ))/((x^2 )^4 −1))  y=x^2   ⇒(1/2)∫(dy/(y^4 −1))  =(1/2)∫[(dy/((y^2 +1)(y+1)(y−1)))]dy  =(1/2)∫[((ay+b)/(y^2 +1))+(c/(y+1))+(d/(y−1))]dy  y=1⇒4d=1⇒d=(1/4)  y=−1⇒−4c=1⇒c=−(1/4)  y=0⇒−b−c+d=1  ⇒b=(1/2)−1=−1  y=2⇒(2a−(1/2))(3)(1)+(−(1/4))(5)(1)  +((1/4))(5)(3)=1⇒6a=0  ⇒a=0  ∴(1/2)∫[−(1/2)(1/(y^2 +1))−(1/4)(1/(y+1))+(1/4)(1/(y−1))]dy  =−(1/4)tan^(−1) x^2 −(1/8)ln∣x^2 +1∣  +(1/8)ln∣x^2 −1∣+ C
xx81dx=12d(x2)(x2)41y=x212dyy41=12[dy(y2+1)(y+1)(y1)]dy=12[ay+by2+1+cy+1+dy1]dyy=14d=1d=14y=14c=1c=14y=0bc+d=1b=121=1y=2(2a12)(3)(1)+(14)(5)(1)+(14)(5)(3)=16a=0a=012[121y2+1141y+1+141y1]dy=14tan1x218lnx2+1+18lnx21+C
Answered by mathmax by abdo last updated on 14/Aug/20
complex method      z^8 −1=0 ⇒z^8  =e^(i2kπ)  ⇒z_k =e^((i2kπ)/8)  =e^((ikπ)/4)   k ∈[[0,7]] ⇒F(z) =(z/(z^8 −1)) =(z/(Π_(k=0) ^7 (z−z_k ))) =Σ_(k=0) ^7  (a_k /(z−z_k ))  a_k =(z_k /(8z_k ^7 )) =(z_k ^2 /8) ⇒F(z) =(1/8)Σ_(k=0) ^7  (z_k ^2 /(z−z_k )) ⇒  ∫ F(z)dz =(1/8)Σ_(k=0) ^7  z_k ^2 ln(z−z_k ) +C
complexmethodz81=0z8=ei2kπzk=ei2kπ8=eikπ4k[[0,7]]F(z)=zz81=zk=07(zzk)=k=07akzzkak=zk8zk7=zk28F(z)=18k=07zk2zzkF(z)dz=18k=07zk2ln(zzk)+C

Leave a Reply

Your email address will not be published. Required fields are marked *