Menu Close

Bobhans-1-Let-n-be-a-positive-integer-and-let-x-and-y-be-positive-real-number-such-that-x-n-y-n-1-Prove-that-k-1-n-1-x-2k-1-x-4k-k-1-n-1-y-2k-1-




Question Number 108818 by bobhans last updated on 19/Aug/20
  ((Bobhans)/Δ)  (1)Let n be a positive integer, and let x and y be positive real   number such that x^n  + y^n  = 1 . Prove that   (Σ_(k = 1) ^n ((1+x^(2k) )/(1+x^(4k) )) )(Σ_(k = 1) ^n ((1+y^(2k) )/(1+y^(4k) )) ) < (1/((1−x)(1−y)))  (2) All the letters of the word ′EAMCOT ′ are arranged in different    possible ways. The number of such arrangement in which   no two vowels are adjacent to each other is ___
$$\:\:\frac{\boldsymbol{\mathcal{B}}{ob}\boldsymbol{{hans}}}{\Delta} \\ $$$$\left(\mathrm{1}\right){Let}\:{n}\:{be}\:{a}\:{positive}\:{integer},\:{and}\:{let}\:{x}\:{and}\:{y}\:{be}\:{positive}\:{real}\: \\ $$$${number}\:{such}\:{that}\:{x}^{{n}} \:+\:{y}^{{n}} \:=\:\mathrm{1}\:.\:{Prove}\:{that}\: \\ $$$$\left(\underset{{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}+{x}^{\mathrm{2}{k}} }{\mathrm{1}+{x}^{\mathrm{4}{k}} }\:\right)\left(\underset{{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}+{y}^{\mathrm{2}{k}} }{\mathrm{1}+{y}^{\mathrm{4}{k}} }\:\right)\:<\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}−{y}\right)} \\ $$$$\left(\mathrm{2}\right)\:{All}\:{the}\:{letters}\:{of}\:{the}\:{word}\:'{EAMCOT}\:'\:{are}\:{arranged}\:{in}\:{different}\:\: \\ $$$${possible}\:{ways}.\:{The}\:{number}\:{of}\:{such}\:{arrangement}\:{in}\:{which}\: \\ $$$${no}\:{two}\:{vowels}\:{are}\:{adjacent}\:{to}\:{each}\:{other}\:{is}\:\_\_\_ \\ $$
Answered by john santu last updated on 19/Aug/20
    ((⊸JS⊸)/♦)  (2) we note that there are 3 consonant and  3 vowels A,E and O. Since no two vowels   have tobe together , the possible choice for   vowels are the places marked as ′♦′  ♦M♦C♦T♦, these vowels can be  arranged in P_3 ^( 4)  ways, 3 consonant can be   arranged in 3! ways. Hence the required  number of ways is 3! ×P _3^4   = 6×((4!)/((4−3)!)) = 6×24 = 144
$$\:\:\:\:\frac{\multimap{JS}\multimap}{\diamondsuit} \\ $$$$\left(\mathrm{2}\right)\:{we}\:{note}\:{that}\:{there}\:{are}\:\mathrm{3}\:{consonant}\:{and} \\ $$$$\mathrm{3}\:{vowels}\:{A},{E}\:{and}\:{O}.\:{Since}\:{no}\:{two}\:{vowels}\: \\ $$$${have}\:{tobe}\:{together}\:,\:{the}\:{possible}\:{choice}\:{for}\: \\ $$$${vowels}\:{are}\:{the}\:{places}\:{marked}\:{as}\:'\diamondsuit' \\ $$$$\diamondsuit{M}\diamondsuit{C}\diamondsuit{T}\diamondsuit,\:{these}\:{vowels}\:{can}\:{be} \\ $$$${arranged}\:{in}\:{P}_{\mathrm{3}} ^{\:\mathrm{4}} \:{ways},\:\mathrm{3}\:{consonant}\:{can}\:{be}\: \\ $$$${arranged}\:{in}\:\mathrm{3}!\:{ways}.\:{Hence}\:{the}\:{required} \\ $$$${number}\:{of}\:{ways}\:{is}\:\mathrm{3}!\:×{P}\:_{\mathrm{3}} ^{\mathrm{4}} \\ $$$$=\:\mathrm{6}×\frac{\mathrm{4}!}{\left(\mathrm{4}−\mathrm{3}\right)!}\:=\:\mathrm{6}×\mathrm{24}\:=\:\mathrm{144} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *