Menu Close

BobHans-find-the-formula-d-3-dx-3-g-f-x-




Question Number 107647 by bobhans last updated on 12/Aug/20
       ≍BobHans≍   find the formula (d^3 /dx^3 )[g(f(x))]
BobHansfindtheformulad3dx3[g(f(x))]
Answered by john santu last updated on 12/Aug/20
     □JS□  (1)(d/dx) g(f(x))= (d/du)g(u) (d/dx)f(x)=g^((1)) f^((1))   =g^((1)) (f(x))f^((1)) (x)  (2)(d^2 /dx^2 ) g(f(x))= (d/dx)[(d/dx) g(f(x))]  =(d/dx)[(d/du) g(u) (d/dx)f(x)]  =[(d/dx) (d/du)g(u)][(d/dx)f(x)]+[(d/du)g(u)][(d^2 /dx^2 )f(x)]  = [(du/dx) (d^2 /du^2 )g(u)][(d/dx)f(x)]+[(d/du)g(u)][(d^2 /dx^2 )f(x)]  =g^((1)) f^((2)) +g^((2)) [f^((1)) ]^2   (3)(d^3 /dx^3 ) g(f(x))= g^((1)) f^((3)) +3g^((2)) f^((1)) f^((2)) +g^((3)) [f^((1)) ]^3 .
◻JS◻(1)ddxg(f(x))=ddug(u)ddxf(x)=g(1)f(1)=g(1)(f(x))f(1)(x)(2)d2dx2g(f(x))=ddx[ddxg(f(x))]=ddx[ddug(u)ddxf(x)]=[ddxddug(u)][ddxf(x)]+[ddug(u)][d2dx2f(x)]=[dudxd2du2g(u)][ddxf(x)]+[ddug(u)][d2dx2f(x)]=g(1)f(2)+g(2)[f(1)]2(3)d3dx3g(f(x))=g(1)f(3)+3g(2)f(1)f(2)+g(3)[f(1)]3.

Leave a Reply

Your email address will not be published. Required fields are marked *