Menu Close

bobhans-How-do-you-find-a-point-on-the-curve-y-x-2-closest-to-the-point-0-18-




Question Number 106779 by bobhans last updated on 07/Aug/20
        ^(≻bobhans≺)   How do you find a point on the curve y=x^2   closest to the point (0,18) ?
bobhansHowdoyoufindapointonthecurvey=x2closesttothepoint(0,18)?
Answered by john santu last updated on 07/Aug/20
      ^(@JS@)   let ((√x) ,x) a point on the curve  y=x^2  and closest to point (0,18)  so we have d = (√(((√x)−0)^2 +(x−18)^2 ))  d = (√(x+x^2 −36x+324))   d = (√(x^2 −35x+324))  put d′ = 0 ⇒d′=((2x−35)/(2(√(x^2 −35x+324))))=0  →so the coordinates point we  search is (±(√((35)/2)) , ((35)/2)) .
@JS@let(x,x)apointonthecurvey=x2andclosesttopoint(0,18)sowehaved=(x0)2+(x18)2d=x+x236x+324d=x235x+324putd=0d=2x352x235x+324=0sothecoordinatespointwesearchis(±352,352).
Answered by bobhans last updated on 07/Aug/20
      ^(≻bobhans≺)   find tangent to y=x^2  at (x_o ,y_o ) is y=2x_o (x−x_o )+y_o   find normal to y=x^2  at (x_o ,y_o ) is   y=−(1/(2x_o ))(x−x_o )+y_o  passes through (0,18)  18 = −(1/(2x_o ))(−x_o )+y_o ⇒y_o =18−(1/2)=((35)/2)  so we get x_o = ±(√y_o ) = ±(√((35)/2))  therefore the point are (±(√((35)/2)), ((35)/2))
bobhansfindtangenttoy=x2at(xo,yo)isy=2xo(xxo)+yofindnormaltoy=x2at(xo,yo)isy=12xo(xxo)+yopassesthrough(0,18)18=12xo(xo)+yoyo=1812=352sowegetxo=±yo=±352thereforethepointare(±352,352)
Answered by 1549442205PVT last updated on 07/Aug/20
  Let A (x,x^2 )be any point lying on  the curve y=x^2 .Then  MA=(√((x−0)^2 +(x^2 −18)^2 ))  =(√(x^4 −35x^2 +324))=(√((x^2 −((35)/2))^2 +((71)/4)))  ≥(√((71)/4))=((√(71))/2).  The equality ocurrs when x^2 =((35)/2)  ⇔x=±(√((35)/2))=±((√(70))/2)⇒y=x^2 =((35)/2)  Thus,the point lying on the curve  y=x^2  which is nearest point to the  point (0;18) is the point A(±((√(70))/2);((35)/2))  and that shortest  distance equal to  ((√(71))/2)
LetA(x,x2)beanypointlyingonthecurvey=x2.ThenMA=(x0)2+(x218)2=x435x2+324=(x2352)2+714714=712.Theequalityocurrswhenx2=352x=±352=±702y=x2=352Thus,thepointlyingonthecurvey=x2whichisnearestpointtothepoint(0;18)isthepointA(±702;352)andthatshortestdistanceequalto712
Commented by bemath last updated on 07/Aug/20
typo it should be A(±((√(70))/2), ((35)/2))
typoitshouldbeA(±702,352)
Commented by 1549442205PVT last updated on 07/Aug/20
Thank you sir.I corrected
Thankyousir.Icorrected

Leave a Reply

Your email address will not be published. Required fields are marked *