Question Number 108401 by bobhans last updated on 16/Aug/20

Commented by john santu last updated on 17/Aug/20

Commented by bobhans last updated on 17/Aug/20

Answered by Dwaipayan Shikari last updated on 16/Aug/20
![I=∫_0 ^(π/2) log(sin^2 θ+(a^2 /b^2 )cos^2 θ)+2logb=I(k)+πlogb I(k)=∫_0 ^(π/2) log(sin^2 θ+k^2 cos^2 θ) (k=(a/b)) I′(k)=∫_0 ^(π/2) ((2kcos^2 θ)/(sin^2 θ+k^2 cos^2 θ))dθ I^′ (k)=∫_0 ^(π/2) ((2k)/(tan^2 θ+k^2 ))dθ I^′ (k)=∫_0 ^(π/2) ((2k)/((tan^2 θ+k^2 )(tan^2 θ+1)))dt tanθ=t sec^2 θ=(dt/dθ) I^′ (k)=2k∫_0 ^∞ (1/(t^2 +k^2 ))−(1/(t^2 +1)) dt I′(k)=((2k)/(k^2 −1))∫_0 ^∞ (1/(t^2 +1))−(1/(t^2 +k^2 ))dt I′(k)=((2k)/(k^2 −1))[tan^(−1) t−(1/k)tan^(−1) (t/k)]_0 ^∞ I^′ (k)=((2k)/(k^2 −1)).((k−1)/k).(π/2)=(π/(k+1)) I(k)=∫(π/(k+1))=πlog(k+1)+C=∫_0 ^(π/2) log(sin^2 θ+k^2 cos^2 θ) If k=1 , πlog(2)+C=0, C=−πlog(2) I(k)=πlog(k+1)−πlog(2)=πlog(a+b)−πlog(2)−πlog(b) So Answer is I(k)+πlogb πlog(((a+b)/2))](https://www.tinkutara.com/question/Q108404.png)
Commented by mnjuly1970 last updated on 16/Aug/20
![I=∫_0 ^(π/2) log(sin^2 θ+(a^2 /b^2 )cos^2 θ)+2logb=I(k)+πlogb I(k)=∫_0 ^(π/2) log(sin^2 θ+k^2 cos^2 θ) (k=(a/b)) I′(k)=∫_0 ^(π/2) ((2kcos^2 θ)/(sin^2 θ+k^2 cos^2 θ))dθ I^′ (k)=∫_0 ^(π/2) ((2k)/(tan^2 θ+k^2 ))dθ I^′ (k)=∫_0 ^(π/2) ((2k)/((tan^2 θ+k^2 )(tan^2 θ+1)))dt tanθ=t sec^2 θ=(dt/dθ) I^′ (k)=2k∫_0 ^∞ (1/(t^2 +k^2 ))−(1/(t^2 +1)) dt I′(k)=((2k)/(k^2 −1))∫_0 ^∞ (1/(t^2 +1))−(1/(t^2 +k^2 ))dt I′(k)=((2k)/(k^2 −1))[tan^(−1) t−(1/k)tan^(−1) (t/k)]_0 ^∞ I^′ (k)=((2k)/(k^2 −1)).((k−1)/k).(π/2)=(π/(k+1)) I(k)=∫(π/(k+1))=πlog(k+1)+C=∫_0 ^(π/2) log(sin^2 θ+k^2 cos^2 θ) If k=1 , πlog(2)+C=0, C=−πlog(2) I(k)=πlog(k+1)−πlog(2)=πlog(a+b)−πlog(2)−πlog(b) So Answer is I(k)+πlogb ♣πlog(((a+b)/2))...⇒∫_0 ^(π/2) {log(a^2 sin^2 (x) + b^2 cos^2 (x))}dx=πlog(((a+b)/2))♣ peace upon you. thank you very excellent.](https://www.tinkutara.com/question/Q108409.png)
Answered by mathmax by abdo last updated on 16/Aug/20

Commented by mathmax by abdo last updated on 16/Aug/20
