Menu Close

bobhans-I-0-pi-2-ln-a-2-cos-2-b-2-sin-2-d-




Question Number 108401 by bobhans last updated on 16/Aug/20
   ((bobhans)/(⋱⋰))   I=∫_0 ^(π/2) ln (a^2 cos^2  θ + b^2  sin^2  θ ) dθ ?
bobhans\iddotsI=π/20ln(a2cos2θ+b2sin2θ)dθ?
Commented by john santu last updated on 17/Aug/20
     ((⊸JS⊸)/⊛)  I =π ln (((a+b)/2))
JSI=πln(a+b2)
Commented by bobhans last updated on 17/Aug/20
jooss..thank you all
jooss..thankyouall
Answered by Dwaipayan Shikari last updated on 16/Aug/20
I=∫_0 ^(π/2) log(sin^2 θ+(a^2 /b^2 )cos^2 θ)+2logb=I(k)+πlogb  I(k)=∫_0 ^(π/2) log(sin^2 θ+k^2 cos^2 θ)   (k=(a/b))  I′(k)=∫_0 ^(π/2) ((2kcos^2 θ)/(sin^2 θ+k^2 cos^2 θ))dθ  I^′ (k)=∫_0 ^(π/2) ((2k)/(tan^2 θ+k^2 ))dθ  I^′ (k)=∫_0 ^(π/2) ((2k)/((tan^2 θ+k^2 )(tan^2 θ+1)))dt                        tanθ=t    sec^2 θ=(dt/dθ)  I^′ (k)=2k∫_0 ^∞ (1/(t^2 +k^2 ))−(1/(t^2 +1)) dt  I′(k)=((2k)/(k^2 −1))∫_0 ^∞ (1/(t^2 +1))−(1/(t^2 +k^2 ))dt  I′(k)=((2k)/(k^2 −1))[tan^(−1) t−(1/k)tan^(−1) (t/k)]_0 ^∞   I^′ (k)=((2k)/(k^2 −1)).((k−1)/k).(π/2)=(π/(k+1))  I(k)=∫(π/(k+1))=πlog(k+1)+C=∫_0 ^(π/2) log(sin^2 θ+k^2 cos^2 θ)  If k=1  ,  πlog(2)+C=0,  C=−πlog(2)   I(k)=πlog(k+1)−πlog(2)=πlog(a+b)−πlog(2)−πlog(b)  So  Answer is     I(k)+πlogb  πlog(((a+b)/2))
I=0π2log(sin2θ+a2b2cos2θ)+2logb=I(k)+πlogbI(k)=0π2log(sin2θ+k2cos2θ)(k=ab)I(k)=0π22kcos2θsin2θ+k2cos2θdθI(k)=0π22ktan2θ+k2dθI(k)=0π22k(tan2θ+k2)(tan2θ+1)dttanθ=tsec2θ=dtdθI(k)=2k01t2+k21t2+1dtI(k)=2kk2101t2+11t2+k2dtI(k)=2kk21[tan1t1ktan1tk]0I(k)=2kk21.k1k.π2=πk+1I(k)=πk+1=πlog(k+1)+C=0π2log(sin2θ+k2cos2θ)Ifk=1,πlog(2)+C=0,C=πlog(2)I(k)=πlog(k+1)πlog(2)=πlog(a+b)πlog(2)πlog(b)SoAnswerisI(k)+πlogbπlog(a+b2)
Commented by mnjuly1970 last updated on 16/Aug/20
I=∫_0 ^(π/2) log(sin^2 θ+(a^2 /b^2 )cos^2 θ)+2logb=I(k)+πlogb  I(k)=∫_0 ^(π/2) log(sin^2 θ+k^2 cos^2 θ)   (k=(a/b))  I′(k)=∫_0 ^(π/2) ((2kcos^2 θ)/(sin^2 θ+k^2 cos^2 θ))dθ  I^′ (k)=∫_0 ^(π/2) ((2k)/(tan^2 θ+k^2 ))dθ  I^′ (k)=∫_0 ^(π/2) ((2k)/((tan^2 θ+k^2 )(tan^2 θ+1)))dt                        tanθ=t    sec^2 θ=(dt/dθ)  I^′ (k)=2k∫_0 ^∞ (1/(t^2 +k^2 ))−(1/(t^2 +1)) dt  I′(k)=((2k)/(k^2 −1))∫_0 ^∞ (1/(t^2 +1))−(1/(t^2 +k^2 ))dt  I′(k)=((2k)/(k^2 −1))[tan^(−1) t−(1/k)tan^(−1) (t/k)]_0 ^∞   I^′ (k)=((2k)/(k^2 −1)).((k−1)/k).(π/2)=(π/(k+1))  I(k)=∫(π/(k+1))=πlog(k+1)+C=∫_0 ^(π/2) log(sin^2 θ+k^2 cos^2 θ)  If k=1  ,  πlog(2)+C=0,  C=−πlog(2)   I(k)=πlog(k+1)−πlog(2)=πlog(a+b)−πlog(2)−πlog(b)  So  Answer is     I(k)+πlogb  ♣πlog(((a+b)/2))...⇒∫_0 ^(π/2) {log(a^2 sin^2 (x) + b^2 cos^2 (x))}dx=πlog(((a+b)/2))♣    peace upon you. thank you   very excellent.
I=0π2log(sin2θ+a2b2cos2θ)+2logb=I(k)+πlogbI(k)=0π2log(sin2θ+k2cos2θ)(k=ab)I(k)=0π22kcos2θsin2θ+k2cos2θdθI(k)=0π22ktan2θ+k2dθI(k)=0π22k(tan2θ+k2)(tan2θ+1)dttanθ=tsec2θ=dtdθI(k)=2k01t2+k21t2+1dtI(k)=2kk2101t2+11t2+k2dtI(k)=2kk21[tan1t1ktan1tk]0I(k)=2kk21.k1k.π2=πk+1I(k)=πk+1=πlog(k+1)+C=0π2log(sin2θ+k2cos2θ)Ifk=1,πlog(2)+C=0,C=πlog(2)I(k)=πlog(k+1)πlog(2)=πlog(a+b)πlog(2)πlog(b)SoAnswerisI(k)+πlogbπlog(a+b2)0π2{log(a2sin2(x)+b2cos2(x))}dx=πlog(a+b2)peaceuponyou.thankyouveryexcellent.
Answered by mathmax by abdo last updated on 16/Aug/20
I =∫_0 ^(π/2) ln(a^2  ((1+cos(2θ))/2)+b^2 ((1−cos(2θ))/2))dθ  =∫_0 ^(π/2) ln( ((a^2 +b^2 )/2) +(1/2)(a^2 −b^2 ) cos(2θ))dθ  =∫_0 ^(π/2) ln{(((a^2 +b^2 )/2))(1+((a^2 −b^2 )/(a^2  +b^2 )) cos(2θ)}dθ  =(π/2)ln(((a^2  +b^2 )/2)) +∫_0 ^(π/2) ln{1+((a^2 −b^2 )/(a^2 +b^2 )) cos(2θ)}dθ  (2θ =x) (α=((a^2 −b^2 )/(a^2  +b^2 )))  =(π/2)ln(((a^2  +b^2 )/2)) +(1/2)∫_0 ^π ln(1+α cosx)dx let explicit for o<α<1  f(α) =∫_0 ^π ln(1+α cosx)dx ⇒f^′ (α) =∫_0 ^π  ((cosx)/(1+α cosx))dx  =(1/α)∫_0 ^π  ((1+αcosx −1)/(1+αcosx))dx =(π/α)−(1/α)∫_0 ^π  (dx/(1+α cosx))  and ∫_0 ^π  (dx/(1+αcosx)) =_(tan((x/2))=t)   ∫_0 ^∞   ((2dt)/((1+t^2 )(1+α((1−t^2 )/(1+t^2 )))))  =∫_0 ^∞   ((2dt)/(1+t^2  +α−αt^2 )) =2∫_0 ^∞   (dt/((1−α)t^2  +1+α)) =(2/(1−α))∫_0 ^∞   (dt/(t^2  +((1+α)/(1−α))))  =_(t =(√((1+α)/(1−α)))u)     (2/(1−α)).((1−α)/(1+α))∫_0 ^∞     (1/(1+u^2 ))×((√(1+α))/( (√(1−α))))  =(2/( (√(1−α^2 ))))×(π/2) =(π/( (√(1−α^2 )))) ⇒f^′ (α) =(π/α)−(π/(α(√(1−α^2 )))) ⇒  f(α) =π ∫_1 ^α  (dt/t)−π ∫_1 ^α  (dt/(t(√(1−t^2 )))) +C =πlnα −π∫_1 ^α  (dt/(t(√(1−t^2 )))) +C  C =f(1) =∫_0 ^π ln(1+cosx)dx  we have  ∫_1 ^α  (dt/(t(√(1−t^2 )))) =_(t=sinz)   ∫_(π/2) ^(arcsinα)   ((cosz dz)/(sinz cosz)) =∫_(π/2) ^(arcsinα)  (dz/(sinz))  =_(tan((z/2))=m)    ∫_1 ^(tan(((arcsinα)/2)))   ((2dm)/((1+m^2 )((2m)/(1+m^2 )))) =∫_1 ^(tan(((arcsinα)/2)))  (dm/m)  =ln∣tan(((arcsinα)/2))∣ ⇒f(α) =πln(α)−πln∣tan(((arcsinα)/2))∣ ⇒  I =(π/2)ln(((a^2 +b^2 )/2))+(1/2)f(((a^2 −b^2 )/(a^2  +b^2 )))
I=0π2ln(a21+cos(2θ)2+b21cos(2θ)2)dθ=0π2ln(a2+b22+12(a2b2)cos(2θ))dθ=0π2ln{(a2+b22)(1+a2b2a2+b2cos(2θ)}dθ=π2ln(a2+b22)+0π2ln{1+a2b2a2+b2cos(2θ)}dθ(2θ=x)(α=a2b2a2+b2)=π2ln(a2+b22)+120πln(1+αcosx)dxletexplicitforo<α<1f(α)=0πln(1+αcosx)dxf(α)=0πcosx1+αcosxdx=1α0π1+αcosx11+αcosxdx=πα1α0πdx1+αcosxand0πdx1+αcosx=tan(x2)=t02dt(1+t2)(1+α1t21+t2)=02dt1+t2+ααt2=20dt(1α)t2+1+α=21α0dtt2+1+α1α=t=1+α1αu21α.1α1+α011+u2×1+α1α=21α2×π2=π1α2f(α)=παπα1α2f(α)=π1αdttπ1αdtt1t2+C=πlnαπ1αdtt1t2+CC=f(1)=0πln(1+cosx)dxwehave1αdtt1t2=t=sinzπ2arcsinαcoszdzsinzcosz=π2arcsinαdzsinz=tan(z2)=m1tan(arcsinα2)2dm(1+m2)2m1+m2=1tan(arcsinα2)dmm=lntan(arcsinα2)f(α)=πln(α)πlntan(arcsinα2)I=π2ln(a2+b22)+12f(a2b2a2+b2)
Commented by mathmax by abdo last updated on 16/Aug/20
sorry f(α) =πln(α)−πln∣tan(((arcsinα)/2))∣+∫_0 ^π ln(1+cosx)dx
sorryf(α)=πln(α)πlntan(arcsinα2)+0πln(1+cosx)dx

Leave a Reply

Your email address will not be published. Required fields are marked *