Menu Close

bobhans-I-sin-2x-a-cos-2-x-b-sin-2-x-c-




Question Number 108444 by bobhans last updated on 17/Aug/20
     ((bobhans)/(β⊝β))  I = ∫ ((sin 2x)/(a cos^2 x+b sin^2 x+c))
$$\:\:\:\:\:\frac{\boldsymbol{{bobhans}}}{\beta\circleddash\beta} \\ $$$${I}\:=\:\int\:\frac{\mathrm{sin}\:\mathrm{2}{x}}{{a}\:\mathrm{co}{s}^{\mathrm{2}} {x}+{b}\:\mathrm{sin}\:^{\mathrm{2}} {x}+{c}} \\ $$
Answered by john santu last updated on 17/Aug/20
     ((⊸JS⊸)/★)  recall → { ((cos^2 x=(1/2)+(1/2)cos 2x)),((sin^2 x=(1/2)−(1/2)cos 2x)) :}  next the integral becomes  I= ∫((sin 2x dx)/((1/2)(a+b)+(1/2)(a−b)cos 2x+c))  I=∫ ((2sin 2x dx)/((a+b+2c)+(a−b)cos 2x))  set cos 2x = j →−2sin 2x dx=dj  I= ∫ ((−dj)/((a+b+2c)+(a−b)j))  I = (1/b)∫ ((d(a+b+2c+(a−b)j))/((a+b+2c)+(a−b)j))  I= (1/b)ln ∣a+b+2c+(a−b)j∣ + K  I=(1/b)ln ∣a+b+2c+(a−b)cos 2x∣ + K
$$\:\:\:\:\:\frac{\multimap{JS}\multimap}{\bigstar} \\ $$$${recall}\:\rightarrow\begin{cases}{\mathrm{cos}\:^{\mathrm{2}} {x}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{2}{x}}\\{\mathrm{sin}\:^{\mathrm{2}} {x}=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{2}{x}}\end{cases} \\ $$$${next}\:{the}\:{integral}\:{becomes} \\ $$$${I}=\:\int\frac{\mathrm{sin}\:\mathrm{2}{x}\:{dx}}{\frac{\mathrm{1}}{\mathrm{2}}\left({a}+{b}\right)+\frac{\mathrm{1}}{\mathrm{2}}\left({a}−{b}\right)\mathrm{cos}\:\mathrm{2}{x}+{c}} \\ $$$${I}=\int\:\frac{\mathrm{2sin}\:\mathrm{2}{x}\:{dx}}{\left({a}+{b}+\mathrm{2}{c}\right)+\left({a}−{b}\right)\mathrm{cos}\:\mathrm{2}{x}} \\ $$$${set}\:\mathrm{cos}\:\mathrm{2}{x}\:=\:{j}\:\rightarrow−\mathrm{2sin}\:\mathrm{2}{x}\:{dx}={dj} \\ $$$${I}=\:\int\:\frac{−{dj}}{\left({a}+{b}+\mathrm{2}{c}\right)+\left({a}−{b}\right){j}} \\ $$$${I}\:=\:\frac{\mathrm{1}}{{b}}\int\:\frac{{d}\left({a}+{b}+\mathrm{2}{c}+\left({a}−{b}\right){j}\right)}{\left({a}+{b}+\mathrm{2}{c}\right)+\left({a}−{b}\right){j}} \\ $$$${I}=\:\frac{\mathrm{1}}{{b}}\mathrm{ln}\:\mid{a}+{b}+\mathrm{2}{c}+\left({a}−{b}\right){j}\mid\:+\:{K} \\ $$$${I}=\frac{\mathrm{1}}{{b}}\mathrm{ln}\:\mid{a}+{b}+\mathrm{2}{c}+\left({a}−{b}\right)\mathrm{cos}\:\mathrm{2}{x}\mid\:+\:{K}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *