Menu Close

bobhans-I-sin-2x-a-cos-2-x-b-sin-2-x-c-




Question Number 108444 by bobhans last updated on 17/Aug/20
     ((bobhans)/(β⊝β))  I = ∫ ((sin 2x)/(a cos^2 x+b sin^2 x+c))
bobhansββI=sin2xacos2x+bsin2x+c
Answered by john santu last updated on 17/Aug/20
     ((⊸JS⊸)/★)  recall → { ((cos^2 x=(1/2)+(1/2)cos 2x)),((sin^2 x=(1/2)−(1/2)cos 2x)) :}  next the integral becomes  I= ∫((sin 2x dx)/((1/2)(a+b)+(1/2)(a−b)cos 2x+c))  I=∫ ((2sin 2x dx)/((a+b+2c)+(a−b)cos 2x))  set cos 2x = j →−2sin 2x dx=dj  I= ∫ ((−dj)/((a+b+2c)+(a−b)j))  I = (1/b)∫ ((d(a+b+2c+(a−b)j))/((a+b+2c)+(a−b)j))  I= (1/b)ln ∣a+b+2c+(a−b)j∣ + K  I=(1/b)ln ∣a+b+2c+(a−b)cos 2x∣ + K
JSrecall{cos2x=12+12cos2xsin2x=1212cos2xnexttheintegralbecomesI=sin2xdx12(a+b)+12(ab)cos2x+cI=2sin2xdx(a+b+2c)+(ab)cos2xsetcos2x=j2sin2xdx=djI=dj(a+b+2c)+(ab)jI=1bd(a+b+2c+(ab)j)(a+b+2c)+(ab)jI=1blna+b+2c+(ab)j+KI=1blna+b+2c+(ab)cos2x+K

Leave a Reply

Your email address will not be published. Required fields are marked *