Question Number 107372 by bobhans last updated on 10/Aug/20
$$\:\:\:\gtrdot\boldsymbol{\mathcal{B}\mathrm{obhans}}\lessdot \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{x}\:\sqrt{\frac{\mathrm{2x}−\mathrm{cos}\:\mathrm{5x}}{\mathrm{3x}^{\mathrm{3}} }\:}\:? \\ $$
Answered by john santu last updated on 10/Aug/20
$$\:\:\:\:\:\:\:\:\divideontimes\mathcal{JS}\divideontimes \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{{x}^{\mathrm{2}} }\:\sqrt{\frac{\mathrm{2}{x}−\mathrm{cos}\:\mathrm{5}{x}}{\mathrm{3}{x}^{\mathrm{3}} }\:}\:=\: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\frac{\mathrm{2}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} \mathrm{cos}\:\mathrm{5}{x}}{\mathrm{3}{x}^{\mathrm{3}} }\:}\:= \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt{\frac{\mathrm{2}}{\mathrm{3}}−\mathrm{0}}\:=\:\frac{\sqrt{\mathrm{6}}}{\mathrm{3}}\: \\ $$
Answered by Dwaipayan Shikari last updated on 10/Aug/20
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\sqrt{\frac{\mathrm{2x}−\mathrm{cos5x}}{\mathrm{x}}}\:\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\sqrt{\:\mathrm{2}−\frac{\mathrm{cos5x}}{\mathrm{x}}}\:\:=\sqrt{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$$\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{cos5x}}{\mathrm{x}}=\mathrm{0} \\ $$$$\left(−\mathrm{1}\leqslant\mathrm{cos5x}\leqslant\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\: \\ $$