Menu Close

bobhans-pi-2-pi-cos-x-sin-x-dx-




Question Number 108382 by bobhans last updated on 16/Aug/20
   ((bobhans)/(⋰⋱))   ∫_(π/2) ^π ∣ cos x−sin x ∣ dx ?
bobhans\iddotsππ/2cosxsinxdx?
Commented by PRITHWISH SEN 2 last updated on 16/Aug/20
by shifting the entire function by π we get  ∫_((3π)/2) ^(2π) (cos x−sin x)dx= sin x+cos x∣_((3π)/2) ^(2π)  = 2
byshiftingtheentirefunctionbyπweget3π22π(cosxsinx)dx=sinx+cosx3π22π=2
Answered by bemath last updated on 16/Aug/20
    ((△((Be)/(Math))△)/△)   we know that cos x−sin x < 0   for (π/2) < x < π   then ∫_(π/2) ^π ∣cos x−sin x∣ dx =  ∫_(π/2) ^π (sin x−cos x) dx = (−cos x−sin x)]_(π/2) ^π   = 1−(−1) = 2
BeMathweknowthatcosxsinx<0forπ2<x<πthenππ/2cosxsinxdx=ππ/2(sinxcosx)dx=(cosxsinx)]π2π=1(1)=2
Answered by 1549442205PVT last updated on 17/Aug/20
cosx−sinx=(√2) (((√2)/2)cosx−((√2)/2)sinx)  =(√2)(sin(π/4)cosx−cos(π/4)sinx)  =(√(2 ))sin((π/4)−x)=−(√2) .sin(x−(π/4))<0  for x∈[(π/2);π].Hence, I=∫_(π/2) ^π ∣ cos x−sin x ∣ dx  = ∫_(π/2) ^π (sinx−cos x)  dx   =(−cosx−sinx)∣ _(π/2)^π =(1−0)−(0−1)  =2  or I=(√2)∫sin(x−(π/4))dx=−(√2)cos(x−(π/4))∣_(π/2) ^π   =−(√2) (cos((3π)/4)−cos(π/4))=−(√2)(−((√2)/2)−((√2)/2))  =−(√2)×(−(√2) )=2
cosxsinx=2(22cosx22sinx)=2(sinπ4cosxcosπ4sinx)=2sin(π4x)=2.sin(xπ4)<0forx[π2;π].Hence,I=ππ/2cosxsinxdx=ππ/2(sinxcosx)dx=(cosxsinx)π2π=(10)(01)=2orI=2sin(xπ4)dx=2cos(xπ4)π2π=2(cos3π4cosπ4)=2(2222)=2×(2)=2

Leave a Reply

Your email address will not be published. Required fields are marked *