Menu Close

bx-3-10a-2-bx-3a-3-y-ay-3-10ab-2-y-3b-3-x-solve-for-x-and-y-in-terms-of-a-b-and-solve-for-a-and-b-in-terms-of-x-y-




Question Number 192957 by York12 last updated on 31/May/23
  bx^3 =10a^2 bx + 3a^3 y , ay^3 = 10ab^2 y + 3b^3 x  solve for x and y in terms of (a , b)  and solve for a and b in terms of  (x , y )
bx3=10a2bx+3a3y,ay3=10ab2y+3b3xsolveforxandyintermsof(a,b)andsolveforaandbintermsof(x,y)
Commented by York12 last updated on 02/Jun/23
Commented by York12 last updated on 02/Jun/23
no common roots  means no existence for any value  of x which can satify both equations  ⇒ your system of  equations is again  wrong
nocommonrootsmeansnoexistenceforanyvalueofxwhichcansatifybothequationsyoursystemofequationsisagainwrong
Answered by a.lgnaoui last updated on 01/Jun/23
 { ((bx^3 −10a^2 bx=3a^3 y⇒   y=((xb(x^2 −10a^2 ))/(3a^3 )) (1))),((3b^3 x=ay^3 −10ab^2 y⇒  x=((ya(y^2 −10b^2 ))/(3b^3 ))  (2))) :}  y^2 =((x^2 b^2 (x^2 −10a^2 )^2 )/(9a^6 ))  x^2 =((y^2 a^2 (y^2 −10b^2 ))/(9b^6 ))  (1)⇔y=(b/(3a^3 ))[((ya(y^2 −10b^2 )/(3b^3 ))][(((y^2 a^2 (y^2 −10b^2 )−90a^2 b^6 )/(9b^6 ))]  81a^3 b^9 y=ab(y^2 −10b^2 )(a^2 y^4 −10y^2 a^2 b^2 −90a^2 b^6 )                 =a^3 b(y^2 −10b^2 )(y^4 −10y^2 b^2 −90b^6 )                =a^3 b[y^6 −10y^4 b^2 −90y^2 b^6      −10b^2 y^4 +100b^4 y^2 +900b^8   =a^3 b[y^6 −20b^2 y^4 −(90b^6 −100b^4 )y^2 +900b^8 ]  =81a^3 b^9 y    ⇒81b^8 y=y^6 −20b^2 y^4 −10b^4 (9b^2 −10)y^2 +900b^8   ⇒y^6 −20b^2 [y^4 −(1/2)(9b^2 −10)b^2 y^2 +45b^6 ]−81b^8 y=0  =y^6 −20b^2 (y^2 −(((9b^2 −10)b^2 )/4))^2 −81b^8 y+45b^6 −(((9b^2 −10)b^4 )/(16))=0  ..........to continious
{bx310a2bx=3a3y\boldsymboly=\boldsymbolxb(\boldsymbolx210\boldsymbola2)3\boldsymbola3(1)3b3x=ay310ab2y\boldsymbolx=\boldsymbolya(\boldsymboly210\boldsymbolb2)3\boldsymbolb3(2)\boldsymboly2=\boldsymbolx2\boldsymbolb2(\boldsymbolx210\boldsymbola2)29\boldsymbola6\boldsymbolx2=\boldsymboly2\boldsymbola2(\boldsymboly210\boldsymbolb2)9\boldsymbolb6(1)\boldsymboly=\boldsymbolb3\boldsymbola3[\boldsymbolya(\boldsymboly210\boldsymbolb23\boldsymbolb3][(\boldsymboly2\boldsymbola2(\boldsymboly210\boldsymbolb2)90\boldsymbola2\boldsymbolb69\boldsymbolb6]81\boldsymbola3\boldsymbolb9\boldsymboly=\boldsymbolab(\boldsymboly210\boldsymbolb2)(\boldsymbola2\boldsymboly410\boldsymboly2\boldsymbola2\boldsymbolb290\boldsymbola2\boldsymbolb6)=\boldsymbola3\boldsymbolb(\boldsymboly210\boldsymbolb2)(\boldsymboly410\boldsymboly2\boldsymbolb290\boldsymbolb6)=\boldsymbola3\boldsymbolb[\boldsymboly610\boldsymboly4\boldsymbolb290\boldsymboly2\boldsymbolb610\boldsymbolb2\boldsymboly4+100\boldsymbolb4\boldsymboly2+900\boldsymbolb8=\boldsymbola3\boldsymbolb[\boldsymboly620\boldsymbolb2\boldsymboly4(90\boldsymbolb6100\boldsymbolb4)\boldsymboly2+900\boldsymbolb8]=81\boldsymbola3\boldsymbolb9\boldsymboly81b8\boldsymboly=\boldsymboly620\boldsymbolb2\boldsymboly410\boldsymbolb4(9\boldsymbolb210)\boldsymboly2+900\boldsymbolb8\boldsymboly620\boldsymbolb2[\boldsymboly412(9\boldsymbolb210)\boldsymbolb2\boldsymboly2+45\boldsymbolb6]81\boldsymbolb8\boldsymboly=0=\boldsymboly620\boldsymbolb2(\boldsymboly2(9\boldsymbolb210)\boldsymbolb24)281\boldsymbolb8\boldsymboly+45\boldsymbolb6(9\boldsymbolb210)\boldsymbolb416=0.\boldsymbolto\boldsymbolcontinious
Answered by Frix last updated on 01/Jun/23
bx^3 =10a^2 bx+3a^3 y ⇔ y=((bx(x^2 −10a^2 ))/(3a^3 ))  Inserting in the 2^(nd)  equation and factorizing  ((b^3 x(x^2 −a^2 )(x^2 −7a^2 )(x^2 −9a^2 )(x^2 −13a^2 ))/(27a^8 ))=0  The rest is easy
bx3=10a2bx+3a3yy=bx(x210a2)3a3Insertinginthe2ndequationandfactorizingb3x(x2a2)(x27a2)(x29a2)(x213a2)27a8=0Therestiseasy
Commented by York12 last updated on 01/Jun/23
that would take a lot of time
thatwouldtakealotoftime
Commented by York12 last updated on 01/Jun/23
watch this
watchthis
Answered by a.lgnaoui last updated on 01/Jun/23
(suite)     { ((bx^3 −10ba^2 x=3a^3 y   ⇒b=((3a^3 y)/(x(x^2 −10a^2 ))) (1))),((ay^3 −10ab^2 y=3b^3 x  ⇒a=((3b^3 x)/(y(y^2 −10b^2 )))  (2))) :}    Remarque:  ab=((3a^3 )/((x^2 −10a^2 )))×((3b^3 )/(y^2 −10b^2 ))      =((9a^3 b^3 )/((x^2 −10a^2 )(y^2 −10b^2 )))  ⇒9a^2 b^2 =(x^2 −10a^2 )(y^2 −10b^2 )  cette equation nous permet  de calculer    a en fonction  de b  et   y en fonxtion de x  9a^2 b^2 =x^2 y^2 −10b^2 x^2 −10a^2 y^2 +100a^2 b^2   91a^2 b^2 =10(a^2 y^2 +b^2 x^2 )−x^2 y^2         a^2 =((x^2 (10b^2 −y^2 ))/(91b^2 −10y^2 )) (si b≠y(√((10)/(91)))  etb>(y/( (√(10)))))
(suite){bx310ba2x=3a3y\boldsymbolb=3\boldsymbola3yx(x210\boldsymbola2)(1)ay310ab2y=3b3x\boldsymbola=3\boldsymbolb3xy(y210b2)(2)\boldsymbolRemarque:ab=3a3(x210a2)×3b3y210b2=9a3b3(x210a2)(y210b2)9a2b2=(x210a2)(y210b2)cetteequationnouspermetdecalculer\boldsymbolaenfonctionde\boldsymbolbet\boldsymbolyenfonxtionde\boldsymbolx9\boldsymbola2\boldsymbolb2=\boldsymbolx2\boldsymboly210\boldsymbolb2\boldsymbolx210\boldsymbola2\boldsymboly2+100\boldsymbola2\boldsymbolb291\boldsymbola2\boldsymbolb2=10(\boldsymbola2\boldsymboly2+\boldsymbolb2\boldsymbolx2)\boldsymbolx2\boldsymboly2\boldsymbola2=\boldsymbolx2(10b2\boldsymboly2)91\boldsymbolb210\boldsymboly2(\boldsymbolsi\boldsymbolby1091etb>y10)
Answered by York12 last updated on 01/Jun/23
bx^3  = 10a^2 bx + 3a^3 y ........(i)  ay^3  = 10ab^2 y + 3b^3 x  .......(ii)  (((i))/((ii))) we obtain : ((bx^3 )/(ay^3 ))=((a^2 (10bx + 3ay))/(b^2 (10ay + 3bx)))   ⇒ ((b^3 x^3 )/(a^3 y^3 ))= ((10bx + 3ay)/(10ay +3bx)) = ((((10 bx)/(ay))+3)/(10 + ((3 bx)/(ay))))   set ((bx)/(ay)) = λ ⇒ λ^3  = ((10 λ +3)/(10 + 3 λ)) ⇒ 3λ^4  + 10 λ^(3 )  = 10λ +3   3λ^4  − 3 + 10 λ^3  −10 λ = 0  (λ^2  −1)(3λ^2  + 3) + 10 λ (λ^2  −1)=0  (λ−1)(λ+1)(λ+3)(3λ+1) =0   ⇒ λ ∈ { 1 , −1 , −3 , ((−1)/3) }  By substituting we obtain The required   values of x , y , a and b .★
bx3=10a2bx+3a3y..(i)ay3=10ab2y+3b3x.(ii)(i)(ii)weobtain:bx3ay3=a2(10bx+3ay)b2(10ay+3bx)b3x3a3y3=10bx+3ay10ay+3bx=10bxay+310+3bxaysetbxay=λλ3=10λ+310+3λ3λ4+10λ3=10λ+33λ43+10λ310λ=0(λ21)(3λ2+3)+10λ(λ21)=0(λ1)(λ+1)(λ+3)(3λ+1)=0λ{1,1,3,13}BysubstitutingweobtainTherequiredvaluesofx,y,aandb.
Commented by Frix last updated on 01/Jun/23
To divide 2 equations is not allowed:  (1) 6=4 false  (2) 3=2 false  (((1))/((2))) (6/3)=(4/2) true
Todivide2equationsisnotallowed:(1)6=4false(2)3=2false(1)(2)63=42true
Commented by ajfour last updated on 01/Jun/23
but  if      6=8−2                      3=13−10  ⇒  2=(6/3)=((8−2)/(13−10))     (..)!
butif6=823=13102=63=821310(..)!
Commented by York12 last updated on 01/Jun/23
what you have written here is based on if   6=4 is false   3=2 is false   but if the statement is true then we can always   divide two equations
whatyouhavewrittenhereisbasedonif6=4isfalse3=2isfalsebutifthestatementistruethenwecanalwaysdividetwoequations
Commented by York12 last updated on 01/Jun/23
nothing extraordinary
nothingextraordinary
Commented by York12 last updated on 01/Jun/23
  To divide 2 equations is not allowed:  (1) 6=4 false  (2) 3=2 false  (((1))/((2))) (6/3)=(4/2) true  whereas in my questions the equations   are right then  ((LHS_(equ (1)) )/(LHS_(equ(2)) )) =((RHS_(equ (1)) )/(RHS_(equ (2)) ))
Todivide2equationsisnotallowed:(1)6=4false(2)3=2false(1)(2)63=42truewhereasinmyquestionstheequationsarerightthenLHSequ(1)LHSequ(2)=RHSequ(1)RHSequ(2)
Commented by Frix last updated on 01/Jun/23
You′re wrong here.  Another example (we had some similar  “solutions” here some time ago):  (1) x^4 −x^3 −43x^2 +23x+203=0  (2) x^3 −6x^2 −13x+41=0  =================  (1) x^4 −x^3 −43x^2 −23x+210=7  (2) x^3 −6x^2 −13x+42=1  =================  (1) (x−7)(x−2)(x+3)(x+5)=7  (2) (x−7)(x−2)(x+3)=1  =================  (((1))/((2))) x+5=7 ⇒ x=2 (false)    But both equations are “true”...
Yourewronghere.Anotherexample(wehadsomesimilarsolutionsheresometimeago):(1)x4x343x2+23x+203=0(2)x36x213x+41=0=================(1)x4x343x223x+210=7(2)x36x213x+42=1=================(1)(x7)(x2)(x+3)(x+5)=7(2)(x7)(x2)(x+3)=1=================(1)(2)x+5=7x=2(false)Butbothequationsaretrue
Commented by ajfour last updated on 02/Jun/23
coz   if x=2   we  shudnt have  divided by (x−7)(x−2)(x+3)  so it doesnt  deceive. we know  x=2  is then false.
cozifx=2weshudnthavedividedby(x7)(x2)(x+3)soitdoesntdeceive.weknowx=2isthenfalse.
Commented by York12 last updated on 02/Jun/23
sorry but for again you are wrong   because both equations canot be true   simultaously  (x−7)(x−2)(x+3)_(T) =1  (x−7)(x−2)(x+3)_(T) (x+5)=7  T =1   T × (x+5) =7 → x=2  That is so trivial   but if you will substitute you will   find that x doesnot satisfy the given  system of equations  then that means there are two variables  to make that happen your equations  has to written as   (y−7)(y−2)(y+3)(x+5)=7  (y−7)(y−2)(y+3)=1  then that can happen    and since you have commited  such a mistake I advise you  to study theory of equations  specificly the concept of common roots  cause those two equations that you have   obtained doesnot have any common   roots
sorrybutforagainyouarewrongbecausebothequationscanotbetruesimultaously(x7)(x2)(x+3)T=1(x7)(x2)(x+3)T(x+5)=7T=1T×(x+5)=7x=2Thatissotrivialbutifyouwillsubstituteyouwillfindthatxdoesnotsatisfythegivensystemofequationsthenthatmeanstherearetwovariablestomakethathappenyourequationshastowrittenas(y7)(y2)(y+3)(x+5)=7(y7)(y2)(y+3)=1thenthatcanhappenandsinceyouhavecommitedsuchamistakeIadviseyoutostudytheoryofequationsspecificlytheconceptofcommonrootscausethosetwoequationsthatyouhaveobtaineddoesnothaveanycommonroots
Commented by York12 last updated on 02/Jun/23
wrong  cause both equtions can not be true   cause they do not have any common roots !!!!    then for again the assumptions  are wrong
wrongcausebothequtionscannotbetruecausetheydonothaveanycommonroots!!!!thenforagaintheassumptionsarewrong
Commented by ajfour last updated on 02/Jun/23
who do u exactly tell?this all..
whodouexactlytell?thisall..
Commented by York12 last updated on 02/Jun/23
to frix
tofrix
Commented by ajfour last updated on 03/Jun/23
He's long past all this, we ll never get over!
Commented by Frix last updated on 08/Jun/23
I′m not an idiot.  You cannot divide 2 equations before  showing that this division is legit.
Imnotanidiot.Youcannotdivide2equationsbeforeshowingthatthisdivisionislegit.
Commented by York12 last updated on 13/Jun/23
no you can
noyoucannoyoucan

Leave a Reply

Your email address will not be published. Required fields are marked *