Menu Close

by-a-simple-method-calculate-k-0-n-COS-kx-




Question Number 163798 by kdaramaths last updated on 10/Jan/22
      by a simple method calculate                        Σ_(k=0) ^n COS(kx)
byasimplemethodcalculatek=0nCOS(kx)
Answered by Ar Brandon last updated on 10/Jan/22
Q162872
Q162872
Answered by Kamel last updated on 10/Jan/22
        by a simple method calculate                      S_n =  Σ_(k=0) ^n cos(kx), T_n =Σ_(k=0) ^n sin(kx)  (cos(x)−1)S_n +sin(x)T_n =Σ_(k=0) ^n cos((k−1)x)=cos(x)−cos(nx)  −sin(x)S_n +(cos(x)−1)T_n =Σ_(k=0) ^n sin((k−1)x)=−sin(x)−sin(nx)  ∴  { ((2sin^2 ((x/2))S_n −2sin((x/2))cos((x/2))T_n =cos(nx)−cos(x)...(1))),((2sin((x/2))cos((x/2))S_n +2sin^2 ((x/2))T_n =(sin(x)+sin(nx))...(2))) :}  (1).sin((x/2))+(2)cos((x/2))⇒S_n =((sin((x/2))cos(nx)−sin((x/2))cos(x)+cos((x/2))sin(x)+cos((x/2))sin(nx))/(2sin((x/2))))  ∴ S_n =((sin((n+(1/2))x)+sin((x/2)))/(2sin((x/2))))=((sin(((n+1)/2)x)cos(((nx)/2)))/(sin((x/2))))
byasimplemethodcalculateSn=k=0ncos(kx),Tn=nk=0sin(kx)(cos(x)1)Sn+sin(x)Tn=nk=0cos((k1)x)=cos(x)cos(nx)sin(x)Sn+(cos(x)1)Tn=nk=0sin((k1)x)=sin(x)sin(nx){2sin2(x2)Sn2sin(x2)cos(x2)Tn=cos(nx)cos(x)(1)2sin(x2)cos(x2)Sn+2sin2(x2)Tn=(sin(x)+sin(nx))(2)(1).sin(x2)+(2)cos(x2)Sn=sin(x2)cos(nx)sin(x2)cos(x)+cos(x2)sin(x)+cos(x2)sin(nx)2sin(x2)Sn=sin((n+12)x)+sin(x2)2sin(x2)=sin(n+12x)cos(nx2)sin(x2)

Leave a Reply

Your email address will not be published. Required fields are marked *