by-a-simple-method-calculate-k-0-n-COS-kx- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 163798 by kdaramaths last updated on 10/Jan/22 byasimplemethodcalculate∑k=0nCOS(kx) Answered by Ar Brandon last updated on 10/Jan/22 Q162872 Answered by Kamel last updated on 10/Jan/22 byasimplemethodcalculateSn=∑k=0ncos(kx),Tn=∑nk=0sin(kx)(cos(x)−1)Sn+sin(x)Tn=∑nk=0cos((k−1)x)=cos(x)−cos(nx)−sin(x)Sn+(cos(x)−1)Tn=∑nk=0sin((k−1)x)=−sin(x)−sin(nx)∴{2sin2(x2)Sn−2sin(x2)cos(x2)Tn=cos(nx)−cos(x)…(1)2sin(x2)cos(x2)Sn+2sin2(x2)Tn=(sin(x)+sin(nx))…(2)(1).sin(x2)+(2)cos(x2)⇒Sn=sin(x2)cos(nx)−sin(x2)cos(x)+cos(x2)sin(x)+cos(x2)sin(nx)2sin(x2)∴Sn=sin((n+12)x)+sin(x2)2sin(x2)=sin(n+12x)cos(nx2)sin(x2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-lim-n-0-e-t-sin-n-t-dt-Next Next post: a-b-gt-0-a-2-b-2-1-prove-that-1-a-1-b-b-a-2-1-a-b-2-1-8-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.