Menu Close

By-divising-an-integer-a-by-integer-b-we-find-the-result-0-285714285714-followed-by-a-group-of-6-digits-285714-which-is-repeated-indefinited-determinate-the-fraction-a-b-




Question Number 122649 by mathocean1 last updated on 18/Nov/20
By divising an integer a by   integer b we find the result:  0.285714285714... followed  by a group of 6 digits: 285714  which is repeated indefinited.  determinate the fraction (a/b)
$${By}\:{divising}\:{an}\:{integer}\:{a}\:{by}\: \\ $$$${integer}\:{b}\:{we}\:{find}\:{the}\:{result}: \\ $$$$\mathrm{0}.\mathrm{285714285714}…\:{followed} \\ $$$${by}\:{a}\:{group}\:{of}\:\mathrm{6}\:{digits}:\:\mathrm{285714} \\ $$$${which}\:{is}\:{repeated}\:{indefinited}. \\ $$$${determinate}\:{the}\:{fraction}\:\frac{{a}}{{b}}\: \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 18/Nov/20
0.285714...=x  285714+x=100000x  285714=999999x  x=((285714)/(999999))=(2/7)=(a/b)
$$\mathrm{0}.\mathrm{285714}…={x} \\ $$$$\mathrm{285714}+{x}=\mathrm{100000}{x} \\ $$$$\mathrm{285714}=\mathrm{999999}{x} \\ $$$${x}=\frac{\mathrm{285714}}{\mathrm{999999}}=\frac{\mathrm{2}}{\mathrm{7}}=\frac{{a}}{{b}} \\ $$
Commented by mathocean1 last updated on 18/Nov/20
thank you very much sir
$${thank}\:{you}\:{very}\:{much}\:{sir} \\ $$
Answered by liberty last updated on 19/Nov/20
let p = 0.285714285714...  ⇒1000000p=285714.285714...  subtract (2) by(1)  999999p=285714 ⇒p=((285714)/(999999))=(2/7)
$${let}\:{p}\:=\:\mathrm{0}.\mathrm{285714285714}… \\ $$$$\Rightarrow\mathrm{1000000}{p}=\mathrm{285714}.\mathrm{285714}… \\ $$$${subtract}\:\left(\mathrm{2}\right)\:{by}\left(\mathrm{1}\right) \\ $$$$\mathrm{999999}{p}=\mathrm{285714}\:\Rightarrow{p}=\frac{\mathrm{285714}}{\mathrm{999999}}=\frac{\mathrm{2}}{\mathrm{7}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *