Menu Close

By-subs-u-2-4-x-evaluate-4-x-x-dx-




Question Number 149989 by ZiYangLee last updated on 08/Aug/21
By subs u^2 =4+x, evaluate ∫ ((√(4+x))/x) dx
$$\mathrm{By}\:\mathrm{subs}\:{u}^{\mathrm{2}} =\mathrm{4}+{x},\:\mathrm{evaluate}\:\int\:\frac{\sqrt{\mathrm{4}+{x}}}{{x}}\:{dx} \\ $$
Answered by puissant last updated on 08/Aug/21
∫((√(4+x))/x)dx=Q  u=(√(4+x)) → u^2 =4+x → x=u^2 −4  dx=2udu  Q=∫(u/(u^2 −4))2udu  =2∫(u^2 /(u^2 −4))du  =2(∫((u^2 −4)/(u^2 −4))du+4∫(1/(u^2 −4))du)  =2u+8∫((a/(u−2))+(b/(u+2)))du  we have  :  (1/((u−2)(u+2)))au+2a+ub−2b=(1/((u−2)(u+2)))  ⇒  { ((2a−2b=1)),((a+b=0)) :}⇒  { ((2a+2b=0)),((2a−2b=1)) :}  ⇒a=(1/4) et b=−(1/4)  ⇒Q=2u+8∫(1/4)×(1/(u−2))du−8∫(1/4)×(1/(u+2))du  ⇒ Q=2u+2ln(((u−2)/(u+2)))+C  soit Q=2(√(4+x))+2ln((((√(4+x))−2)/( (√(4+x))+2)))+C             .....Le puissant....
$$\int\frac{\sqrt{\mathrm{4}+{x}}}{{x}}{dx}={Q} \\ $$$${u}=\sqrt{\mathrm{4}+{x}}\:\rightarrow\:{u}^{\mathrm{2}} =\mathrm{4}+{x}\:\rightarrow\:{x}={u}^{\mathrm{2}} −\mathrm{4} \\ $$$${dx}=\mathrm{2}{udu} \\ $$$${Q}=\int\frac{{u}}{{u}^{\mathrm{2}} −\mathrm{4}}\mathrm{2}{udu} \\ $$$$=\mathrm{2}\int\frac{{u}^{\mathrm{2}} }{{u}^{\mathrm{2}} −\mathrm{4}}{du} \\ $$$$=\mathrm{2}\left(\int\frac{{u}^{\mathrm{2}} −\mathrm{4}}{{u}^{\mathrm{2}} −\mathrm{4}}{du}+\mathrm{4}\int\frac{\mathrm{1}}{{u}^{\mathrm{2}} −\mathrm{4}}{du}\right) \\ $$$$=\mathrm{2}{u}+\mathrm{8}\int\left(\frac{{a}}{{u}−\mathrm{2}}+\frac{{b}}{{u}+\mathrm{2}}\right){du} \\ $$$${we}\:{have}\:\:: \\ $$$$\frac{\mathrm{1}}{\left({u}−\mathrm{2}\right)\left({u}+\mathrm{2}\right)}{au}+\mathrm{2}{a}+{ub}−\mathrm{2}{b}=\frac{\mathrm{1}}{\left({u}−\mathrm{2}\right)\left({u}+\mathrm{2}\right)} \\ $$$$\Rightarrow\:\begin{cases}{\mathrm{2}{a}−\mathrm{2}{b}=\mathrm{1}}\\{{a}+{b}=\mathrm{0}}\end{cases}\Rightarrow\:\begin{cases}{\mathrm{2}{a}+\mathrm{2}{b}=\mathrm{0}}\\{\mathrm{2}{a}−\mathrm{2}{b}=\mathrm{1}}\end{cases} \\ $$$$\Rightarrow{a}=\frac{\mathrm{1}}{\mathrm{4}}\:{et}\:{b}=−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\Rightarrow{Q}=\mathrm{2}{u}+\mathrm{8}\int\frac{\mathrm{1}}{\mathrm{4}}×\frac{\mathrm{1}}{{u}−\mathrm{2}}{du}−\mathrm{8}\int\frac{\mathrm{1}}{\mathrm{4}}×\frac{\mathrm{1}}{{u}+\mathrm{2}}{du} \\ $$$$\Rightarrow\:{Q}=\mathrm{2}{u}+\mathrm{2}{ln}\left(\frac{{u}−\mathrm{2}}{{u}+\mathrm{2}}\right)+{C} \\ $$$${soit}\:{Q}=\mathrm{2}\sqrt{\mathrm{4}+{x}}+\mathrm{2}{ln}\left(\frac{\sqrt{\mathrm{4}+{x}}−\mathrm{2}}{\:\sqrt{\mathrm{4}+{x}}+\mathrm{2}}\right)+{C} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:…..{Le}\:{puissant}…. \\ $$
Commented by peter frank last updated on 08/Aug/21
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *