Menu Close

by-use-the-first-principle-find-dy-dx-of-y-cos-x-8-




Question Number 19903 by j.masanja06@gmail.com last updated on 17/Aug/17
by use the first   principle,find  dy/dx of   y=cos(x−(Π/8))
byusethefirstprinciple,finddy/dxofy=cos(xΠ8)
Answered by icyfalcon999 last updated on 18/Aug/17
(dy/dx)=lim_(h→0) ((f(x+h)−f(x))/h)  =lim_(h→0) ((cos (x+h−(π/8))−cos (x−(π/8)))/h)  =lim_(h→0) ((cos (h+(x−(π/8)))−cos (x−(π/8)))/h)  =lim_(h→0) ((cos (h)cos (x−(π/8))−sin h sin(x−(π/8)) −cos (x−(π/8)))/h)  =lim_(h→0) ((cos (h)cos (x−(π/8))−cos (x−(π/8))−sin h sin(x−(π/8)) )/h)  =lim_(h→0) ((cos (x−(π/8))(cos h−1)−sin h sin(x−(π/8)) )/h)  =lim_(h→0) (((cos (x−(π/8))(cos h−1) )/h)−((sin h sin (x−(π/8)))/h))  =lim_(h→0) (((cos h−1 )/h)•cos (x−(π/8)))−lim_(h→0) (((sin h )/h)•sin (x−(π/8)))  =lim_(h→0) ((cos h−1)/h)•lim_(h→0) cos (x−(π/8))−lim_(h→0) (((sin h )/h))•lim_(h→0) sin (x−(π/8))  =0•cos (x−(π/8))−1(sin (x−(π/8)))  =−sin (x−(π/8))
dydx=limh0f(x+h)f(x)h=limh0cos(x+hπ8)cos(xπ8)h=limh0cos(h+(xπ8))cos(xπ8)h=limh0cos(h)cos(xπ8)sinhsin(xπ8)cos(xπ8)h=limh0cos(h)cos(xπ8)cos(xπ8)sinhsin(xπ8)h=limh0cos(xπ8)(cosh1)sinhsin(xπ8)h=limh0(cos(xπ8)(cosh1)hsinhsin(xπ8)h)=limh0(cosh1hcos(xπ8))limh0(sinhhsin(xπ8))=limh0cosh1hlimcosh0(xπ8)limh0(sinhh)limsinh0(xπ8)=0cos(xπ8)1(sin(xπ8))=sin(xπ8)

Leave a Reply

Your email address will not be published. Required fields are marked *