Menu Close

by-using-demover-theorem-prove-that-sin2-2sin-cos-




Question Number 130103 by mohammad17 last updated on 22/Jan/21
by using demover theorem prove that    sin2θ=2sinθcosθ
byusingdemovertheoremprovethatsin2θ=2sinθcosθ
Answered by Olaf last updated on 22/Jan/21
(cosθ+isinθ)^n  = cos(nθ)+isin(nθ)  For n = 2 :  (cosθ+isinθ)^2  = cos(2θ)+isin(2θ)  cos^2 θ−sin^2 θ+2isinθcosθ = cos(2θ)+isin(2θ)  ⇒ { ((cos^2 θ−sin^2 θ = cos(2θ))),((2sinθcosθ = sin(2θ))) :}
(cosθ+isinθ)n=cos(nθ)+isin(nθ)Forn=2:(cosθ+isinθ)2=cos(2θ)+isin(2θ)cos2θsin2θ+2isinθcosθ=cos(2θ)+isin(2θ){cos2θsin2θ=cos(2θ)2sinθcosθ=sin(2θ)
Commented by mohammad17 last updated on 23/Jan/21
very nice thank you sir
verynicethankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *