Menu Close

by-using-fourier-serie-find-the-value-of-n-0-1-2n-1-2-




Question Number 26751 by abdo imad last updated on 28/Dec/17
by using fourier serie find the value of Σ_(n=0) ^∝  (1/((2n+1)^2 ))
$${by}\:{using}\:{fourier}\:{serie}\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Commented by abdo imad last updated on 30/Dec/17
we know that /x/= (π/2) −(4/π) Σ_(p=0) ^∝  ((cos(2p+1)x)/((2p+1)^2 ))  (the fuction is 2π periodic even)⇒let take x=0  0= (π/2)  −(4/π) Σ_(p=0) ^∝   (1/((2p+1)^2 )) ⇒  Σ_(p=0) ^∝  (1/((2p+1)^2 )) = (π^2 /8)  .
$${we}\:{know}\:{that}\:/{x}/=\:\frac{\pi}{\mathrm{2}}\:−\frac{\mathrm{4}}{\pi}\:\sum_{{p}=\mathrm{0}} ^{\propto} \:\frac{{cos}\left(\mathrm{2}{p}+\mathrm{1}\right){x}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\left({the}\:{fuction}\:{is}\:\mathrm{2}\pi\:{periodic}\:{even}\right)\Rightarrow{let}\:{take}\:{x}=\mathrm{0} \\ $$$$\mathrm{0}=\:\frac{\pi}{\mathrm{2}}\:\:−\frac{\mathrm{4}}{\pi}\:\sum_{{p}=\mathrm{0}} ^{\propto} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow\:\:\sum_{{p}=\mathrm{0}} ^{\propto} \:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *