Menu Close

By-using-the-substitution-x-cos-2-prove-that-1-x-1-x-dx-sin-2-2-C-




Question Number 152608 by ZiYangLee last updated on 30/Aug/21
By using the substitution x=cos 2θ,  prove that ∫ (√((1+x)/(1−x))) dx = −sin 2θ−2θ+C
Byusingthesubstitutionx=cos2θ,provethat1+x1xdx=sin2θ2θ+C
Answered by Olaf_Thorendsen last updated on 30/Aug/21
F(x) = ∫(√( ((1+x)/(1−x)))) dx  F(θ) = ∫(√( ((1+cos2θ)/(1−cos2θ)))) (−2sin2θdθ)  F(θ) = ∫(√( ((2cos^2 θ)/(2sin^2 θ)))) (−4sinθcosθdθ)  F(θ) = ∫∣cotθ∣ (−4sinθcosθdθ)  F(θ) = −4∫cos^2 θdθ)  F(θ) = −2∫(1+cos2θ)dθ)  F(θ) = −2(θ+(1/2)sin2θ)  F(θ) = −sin2θ−2θ+C
F(x)=1+x1xdxF(θ)=1+cos2θ1cos2θ(2sin2θdθ)F(θ)=2cos2θ2sin2θ(4sinθcosθdθ)F(θ)=cotθ(4sinθcosθdθ)F(θ)=4cos2θdθ)F(θ)=2(1+cos2θ)dθ)F(θ)=2(θ+12sin2θ)F(θ)=sin2θ2θ+C
Commented by puissant last updated on 30/Aug/21
Genial Mr !!!
GenialMr!!!
Answered by Ar Brandon last updated on 30/Aug/21
I=∫(√((1+x)/(1−x)))dx, x=cos2ϑ    =−2∫(√((1+cos2ϑ)/(1−cos2ϑ)))∙sin2ϑdϑ    =−2∫((1+cos2ϑ)/( (√(1−cos^2 2ϑ))))∙sin2ϑdϑ    =−2∫((1+cos2ϑ)/(∣sin2ϑ∣))∙sin2ϑdϑ    =∓2∫(1+cos2ϑ)dϑ    =∓(2ϑ+sin2ϑ)+C
I=1+x1xdx,x=cos2ϑ=21+cos2ϑ1cos2ϑsin2ϑdϑ=21+cos2ϑ1cos22ϑsin2ϑdϑ=21+cos2ϑsin2ϑsin2ϑdϑ=2(1+cos2ϑ)dϑ=(2ϑ+sin2ϑ)+C

Leave a Reply

Your email address will not be published. Required fields are marked *