By-using-the-substitution-x-cos-2-prove-that-1-x-1-x-dx-sin-2-2-C- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 152608 by ZiYangLee last updated on 30/Aug/21 Byusingthesubstitutionx=cos2θ,provethat∫1+x1−xdx=−sin2θ−2θ+C Answered by Olaf_Thorendsen last updated on 30/Aug/21 F(x)=∫1+x1−xdxF(θ)=∫1+cos2θ1−cos2θ(−2sin2θdθ)F(θ)=∫2cos2θ2sin2θ(−4sinθcosθdθ)F(θ)=∫∣cotθ∣(−4sinθcosθdθ)F(θ)=−4∫cos2θdθ)F(θ)=−2∫(1+cos2θ)dθ)F(θ)=−2(θ+12sin2θ)F(θ)=−sin2θ−2θ+C Commented by puissant last updated on 30/Aug/21 GenialMr!!! Answered by Ar Brandon last updated on 30/Aug/21 I=∫1+x1−xdx,x=cos2ϑ=−2∫1+cos2ϑ1−cos2ϑ⋅sin2ϑdϑ=−2∫1+cos2ϑ1−cos22ϑ⋅sin2ϑdϑ=−2∫1+cos2ϑ∣sin2ϑ∣⋅sin2ϑdϑ=∓2∫(1+cos2ϑ)dϑ=∓(2ϑ+sin2ϑ)+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: solve-lim-n-k-1-n-1-k-n-k-2-n-2-1-n-m-n-Next Next post: what-is-coefficient-of-t-3-in-the-expanssion-1-t-6-1-t-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.