Menu Close

C-0-2-C-1-3-C-2-4-C-3-5-




Question Number 22177 by Tinkutara last updated on 12/Oct/17
(C_0 /2) − (C_1 /3) + (C_2 /4) − (C_3 /5) + ..........
$$\frac{{C}_{\mathrm{0}} }{\mathrm{2}}\:−\:\frac{{C}_{\mathrm{1}} }{\mathrm{3}}\:+\:\frac{{C}_{\mathrm{2}} }{\mathrm{4}}\:−\:\frac{{C}_{\mathrm{3}} }{\mathrm{5}}\:+\:………. \\ $$
Answered by ajfour last updated on 12/Oct/17
x(1−x)^n =C_0 x−C_1 x^2 +C_2 x^3 +..  ∫_0 ^(  1) x(1−x)^n dx=(C_0 /2)−(C_1 /3)+(C_2 /4)−...  for the integral let  1−x=t  (C_0 /2)−(C_1 /3)+(C_2 /4)−...= −∫_1 ^(  0) (1−t)t^n dt                           = ∫_0 ^(  1) (t^n −t^(n+1) )dt       =((t^(n+1) /(n+1))−(t^(n+2) /(n+2)))∣_0 ^1        =(1/(n+1))−(1/(n+2)) =(1/((n+1)(n+2))) .
$${x}\left(\mathrm{1}−{x}\right)^{{n}} ={C}_{\mathrm{0}} {x}−{C}_{\mathrm{1}} {x}^{\mathrm{2}} +{C}_{\mathrm{2}} {x}^{\mathrm{3}} +.. \\ $$$$\int_{\mathrm{0}} ^{\:\:\mathrm{1}} {x}\left(\mathrm{1}−{x}\right)^{{n}} {dx}=\frac{{C}_{\mathrm{0}} }{\mathrm{2}}−\frac{{C}_{\mathrm{1}} }{\mathrm{3}}+\frac{{C}_{\mathrm{2}} }{\mathrm{4}}−… \\ $$$${for}\:{the}\:{integral}\:{let}\:\:\mathrm{1}−{x}={t} \\ $$$$\frac{{C}_{\mathrm{0}} }{\mathrm{2}}−\frac{{C}_{\mathrm{1}} }{\mathrm{3}}+\frac{{C}_{\mathrm{2}} }{\mathrm{4}}−…=\:−\int_{\mathrm{1}} ^{\:\:\mathrm{0}} \left(\mathrm{1}−{t}\right){t}^{{n}} {dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \left({t}^{{n}} −{t}^{{n}+\mathrm{1}} \right){dt} \\ $$$$\:\:\:\:\:=\left(\frac{{t}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}−\frac{{t}^{{n}+\mathrm{2}} }{{n}+\mathrm{2}}\right)\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{{n}+\mathrm{1}}−\frac{\mathrm{1}}{{n}+\mathrm{2}}\:=\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}\:. \\ $$
Commented by Tinkutara last updated on 13/Oct/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *