Menu Close

C-0-2-C-1-3-C-2-4-C-3-5-




Question Number 22177 by Tinkutara last updated on 12/Oct/17
(C_0 /2) − (C_1 /3) + (C_2 /4) − (C_3 /5) + ..........
C02C13+C24C35+.
Answered by ajfour last updated on 12/Oct/17
x(1−x)^n =C_0 x−C_1 x^2 +C_2 x^3 +..  ∫_0 ^(  1) x(1−x)^n dx=(C_0 /2)−(C_1 /3)+(C_2 /4)−...  for the integral let  1−x=t  (C_0 /2)−(C_1 /3)+(C_2 /4)−...= −∫_1 ^(  0) (1−t)t^n dt                           = ∫_0 ^(  1) (t^n −t^(n+1) )dt       =((t^(n+1) /(n+1))−(t^(n+2) /(n+2)))∣_0 ^1        =(1/(n+1))−(1/(n+2)) =(1/((n+1)(n+2))) .
x(1x)n=C0xC1x2+C2x3+..01x(1x)ndx=C02C13+C24fortheintegrallet1x=tC02C13+C24=10(1t)tndt=01(tntn+1)dt=(tn+1n+1tn+2n+2)01=1n+11n+2=1(n+1)(n+2).
Commented by Tinkutara last updated on 13/Oct/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *