Menu Close

C-0-pi-dx-2-cos-2x-




Question Number 165955 by cortano1 last updated on 10/Feb/22
    C = ∫_0 ^( π) (dx/(2+cos 2x)) =?
C=0πdx2+cos2x=?
Answered by MJS_new last updated on 10/Feb/22
∫_0 ^π (dx/(2+cos 2x))=2∫_0 ^(π/2) (dx/(2+cos 2x))  ∫(dx/(2+cos 2x))=       [t=tan x → dx=(dt/(t^2 +1))]  =∫(dt/(t^2 +3))=((√3)/3)arctan (((√3)t)/3) =((√3)/3)arctan (((√3)tan x)/3) +C  ⇒  ∫_0 ^π (dx/(2+cos 2x))=(((√3)π)/3)
π0dx2+cos2x=2π/20dx2+cos2xdx2+cos2x=[t=tanxdx=dtt2+1]=dtt2+3=33arctan3t3=33arctan3tanx3+Cπ0dx2+cos2x=3π3

Leave a Reply

Your email address will not be published. Required fields are marked *