Menu Close

C-2-0-L-ln-R-2-R-1-prove-




Question Number 60219 by ANTARES VY last updated on 19/May/19
C=((2𝛑𝛜𝛜_0 L)/(ln((R_2 /R_1 )))).  prove.
C=2πεε0Lln(R2R1).prove.
Commented by ANTARES VY last updated on 19/May/19
Answered by ajfour last updated on 19/May/19
C=(q/V) = (q/(∫_R_1  ^(  R_2 ) E.dr))  from Gauss′ law  E=((q/L)/(2πεε_0 r))  so    C=(q/V)= (q/(∫_R_1  ^(  R_2 ) (((q/L))/(2πεε_0 r))dr))        ⇒  C=((2πεε_0 L)/(∫_R_1  ^(  R_2 )  (dr/r))) =((2πεε_0 L)/(ln ((R_2 /R_1 )))) .
C=qV=qR1R2E.drfromGausslawE=q/L2πϵϵ0rsoC=qV=qR1R2(q/L)2πϵϵ0rdrC=2πϵϵ0LR1R2drr=2πϵϵ0Lln(R2R1).
Commented by ANTARES VY last updated on 19/May/19
?
?
Commented by ajfour last updated on 19/May/19
Calculate Electric field from  Gauss′ law, rest i have explained  how to use that result.
CalculateElectricfieldfromGausslaw,restihaveexplainedhowtousethatresult.
Commented by ANTARES VY last updated on 19/May/19
E=((q/L)/(2𝛑𝛜𝛜_0 r))   (q/L)=?.   (1/(2𝛑𝛜𝛜_0 r))=((2k)/(𝛜r))=(2/C)    C=((𝛜R)/k).
E=qL2πεε0rqL=?.12πεε0r=2kεr=2CC=εRk.
Commented by ajfour last updated on 19/May/19
Commented by ajfour last updated on 19/May/19
According to Gauss′ law      flux of field through a Gaussian  surface = (1/ε_0 )(charge within Gaussian surface)  assuming charge q and −q on capacitor  plates    εE(2πrL)=(1/ε_0 )(q)  ⇒  E=((q/L)/(2πεε_0 r)) .
AccordingtoGausslawfluxoffieldthroughaGaussiansurface=1ϵ0(chargewithinGaussiansurface)assumingchargeqandqoncapacitorplatesϵE(2πrL)=1ϵ0(q)E=q/L2πϵϵ0r.
Commented by ANTARES VY last updated on 19/May/19

Leave a Reply

Your email address will not be published. Required fields are marked *