Menu Close

C-e-z-1-cos-z-dz-C-z-1-




Question Number 115009 by arcana last updated on 22/Sep/20
∫_C (e^z /(1−cos z))dz ; C:∣z∣=1
Cez1coszdz;C:∣z∣=1
Answered by Olaf last updated on 24/Sep/20
  ∫_C ((coz+isinz)/(1−cosz))dz  ∫_C ((1+isinz+(cosz−1))/(1−cosz))dz  ∫_C (dz/(1−cosz))+i∫_C ((sinz)/(1−cosz))−∫_C dz  ∫_C ((2dz)/(sin^2 (z/2)))+i∫_C ((sinz)/(1−cosz))−∫_C dz  [−4cot(z/2)+iln(1−cosz)−z]_C   Let z = e^(iθ) , θ∈[0 ; 2π]  [−4cot(e^(iθ) /2)+iln(1−cose^(iθ) )−e^(iθ) ]_0 ^(2π)   = 0
Ccoz+isinz1coszdzC1+isinz+(cosz1)1coszdzCdz1cosz+iCsinz1coszCdzC2dzsin2z2+iCsinz1coszCdz[4cotz2+iln(1cosz)z]CLetz=eiθ,θ[0;2π][4coteiθ2+iln(1coseiθ)eiθ]02π=0
Answered by Bird last updated on 24/Sep/20
i give this solution but not sure  I =∫_C   (e^z /(1−cosz))dz  we have  1−cosz ∼(z^2 /2) ⇒(e^z /(1−cosz))∼((2e^z )/z^2 )  so o is a double pole for f(z)=(e^z /(1−cosz))  I =2iπ ×Res(f,0)  Res(f,o) =lim_(z→0)   (1/((2−1)!)){z^2  (e^z /(1−cosz))}^((1))   =lim_(z→0)    {2z^2  e^z }^((1))   =lim_(z→0)    2{2z e^z +2z^2  e^z }  =0
igivethissolutionbutnotsureI=Cez1coszdzwehave1coszz22ez1cosz2ezz2sooisadoublepoleforf(z)=ez1coszI=2iπ×Res(f,0)Res(f,o)=limz01(21)!{z2ez1cosz}(1)=limz0{2z2ez}(1)=limz02{2zez+2z2ez}=0

Leave a Reply

Your email address will not be published. Required fields are marked *