Menu Close

cacuate-pi-4-pi-4-ln-1-a-cos-2-t-dt-with-a-lt-1-




Question Number 95844 by mathmax by abdo last updated on 28/May/20
cacuate  ∫_(−(π/4)) ^(π/4) ln(1+a cos^2 t)dt with ∣a∣<1
cacuateπ4π4ln(1+acos2t)dtwitha∣<1
Answered by mathmax by abdo last updated on 29/May/20
let f(a) =∫_(−(π/4)) ^(π/4)  ln(1+acos^2 t)dt ⇒f(a) =2∫_0 ^(π/4)  ln(1+acos^2 t)dt ⇒  f^′ (a) =2 ∫_0 ^(π/4)  ((cos^2 t)/(1+a cos^2 t))dt =(2/a) ∫_0 ^(π/4)  ((1+acos^2 t−1)/(1+acos^2 t))dt  =(2/a)×(π/4) −(2/a) ∫_0 ^(π/4)  (dt/(1+acos^2 t)) =(π/(2a)) −(2/a)∫_0 ^(π/4)  (dt/(1+acos^2 t))  we have  ∫_0 ^(π/4)  (dt/(1+acos^2 t)) =∫_0 ^(π/4)  (dt/(1+a((1+cos(2t))/2))) =∫_0 ^(π/4)  ((2dt)/(2+a +acos(2t))) =_(2t=u)   =∫_0 ^(π/2)  (du/(2+a +acosu)) =_(tan((u/2)) =z)   ∫_0 ^1  ((2dz)/((1+z^2 )(2+a +a((1−z^2 )/(1+z^2 )))))  =∫_0 ^1  ((2dz)/((2+a)(1+z^2 ) +a−az^2 )) =∫_0 ^1  ((2dz)/(2+a +(2+a−a)z^2 )) =∫_0 ^1  ((2dz)/(2+a+2z^2 ))  =(2/(2+a))∫_0 ^1   (dz/(1+(2/(2+a))z^2 )) =_((√(2/(2+a)))z =α)    (2/(2+a)) ∫_0 ^(√(2/(2+a)))     (((√((2+a)/2))dα)/(1+α^2 ))  =(2/( (√2)))×(1/( (√(2+a)))) [ arctan(α)]_0 ^(√(2/(2+a))) =((√2)/( (√(2+a)))) arctan((√(2/(2+a)))) ⇒  f^′ (a) =(π/(2a)) −(2/a)×((√2)/( (√(2+a)))) arctan((√(2/(2+a)))) ⇒  f(a) =(π/2)ln∣a∣−2∫  (1/a)(√(2/(2+a))) arctan((√(2/(2+a))))da +c  changement (√(2/(2+a)))=t give  (2/(2+a)) =t^2  ⇒((2+a)/2) =(1/t^2 ) ⇒2+a =(2/t^2 ) ⇒a=(2/t^2 )−2 ⇒  da =2(((−2t)/t^4 )) =((−4)/t^3 ) ⇒  ∫(1/a)(√(2/(2+a)))arctan((√(2/(2+a))))da =∫ (1/((2/t^2 )−2))×t×arctan(t)×(((−4)/t^3 ))dt  =−4 ∫   (1/(t^2 ((2/t^2 )−2))) arctan(t)dt =−4 ∫  ((arctan(t))/(2−2t^2 ))dt  =2 ∫ ((arctant)/(t^2 −1))dt  =∫  ((1/(t−1))−(1/(t+1)))arctan(t)dt  =∫  ((arctant)/(t−1))dt−∫ ((arctant)/(t+1))dt (→t =−u)  =∫ ((arctant)/(t−1))dt −∫  ((−arctanu)/(−u +1))(−du) =∫ ((arctan(t))/(t−1))dt+∫  ((arctanu)/(u−1))du  =2 ∫ ((arctan(t))/(t−1))dt....be continued....
letf(a)=π4π4ln(1+acos2t)dtf(a)=20π4ln(1+acos2t)dtf(a)=20π4cos2t1+acos2tdt=2a0π41+acos2t11+acos2tdt=2a×π42a0π4dt1+acos2t=π2a2a0π4dt1+acos2twehave0π4dt1+acos2t=0π4dt1+a1+cos(2t)2=0π42dt2+a+acos(2t)=2t=u=0π2du2+a+acosu=tan(u2)=z012dz(1+z2)(2+a+a1z21+z2)=012dz(2+a)(1+z2)+aaz2=012dz2+a+(2+aa)z2=012dz2+a+2z2=22+a01dz1+22+az2=22+az=α22+a022+a2+a2dα1+α2=22×12+a[arctan(α)]022+a=22+aarctan(22+a)f(a)=π2a2a×22+aarctan(22+a)f(a)=π2lna21a22+aarctan(22+a)da+cchangement22+a=tgive22+a=t22+a2=1t22+a=2t2a=2t22da=2(2tt4)=4t31a22+aarctan(22+a)da=12t22×t×arctan(t)×(4t3)dt=41t2(2t22)arctan(t)dt=4arctan(t)22t2dt=2arctantt21dt=(1t11t+1)arctan(t)dt=arctantt1dtarctantt+1dt(t=u)=arctantt1dtarctanuu+1(du)=arctan(t)t1dt+arctanuu1du=2arctan(t)t1dt.becontinued.
Commented by maths mind last updated on 21/Jun/20
∫((arctan(x))/(x−1))dx=arctan(x)ln∣x−1∣−∫((ln(x−1))/(x^((2) +1))dx  ∫((ln(x−1))/(x^2 +1))dx=(1/(2i))∫((ln(x−1)(x+i−(x−i)))/((x+i)(x−i)))dx  =(1/(2i))∫((ln(x−1))/(x−i))−(1/(2i))∫((ln(x−1))/((x+i)))dx  j=x−i  ⇒dj=dx  ∫((ln(j+i−1))/j)dj=∫((ln(i−1)ln(1−(j/(1−i))))/(j/(1−i)))d((j/(1−i)))  =−ln(i−1)Li_2 ((j/(1−i)))  ∫((ln(x−1))/(x+i))dx=∫((ln(y−i−1))/y)dy=∫((ln(−i−1)ln(1−(y/(i+1))))/(y/(i+1))).d((y/(1+i)))  =−ln(−1−i)Li_2 ((y/(i+1)))  we get −(1/(2i)){ln(i−1)Li_2 (((x−i)/(1−i)))−ln(−1−i)Li_2 (((x+i)/(i+1)))}
arctan(x)x1dx=arctan(x)lnx1ln(x1)x(2+1dxln(x1)x2+1dx=12iln(x1)(x+i(xi))(x+i)(xi)dx=12iln(x1)xi12iln(x1)(x+i)dxj=xidj=dxln(j+i1)jdj=ln(i1)ln(1j1i)j1id(j1i)=ln(i1)Li2(j1i)ln(x1)x+idx=ln(yi1)ydy=ln(i1)ln(1yi+1)yi+1.d(y1+i)=ln(1i)Li2(yi+1)weget12i{ln(i1)Li2(xi1i)ln(1i)Li2(x+ii+1)}
Answered by mathmax by abdo last updated on 29/May/20
let determine f(a) =∫_(−(π/4)) ^(π/4)  ln(1+acos^2 x)dx at form of serie  f(a) =2∫_0 ^(π/4)  ln(1+a ×((1+cos(2x))/2))dx =2 ∫_0 ^(π/4)  ln(2+a +acos(2x))dx  −2×(π/4)ln(2) +2 ∫_0 ^(π/4)  ln{ (2+a)(1+(a/(2+a))cos(2x)}dx  =−(π/2)ln(2)+(π/2)ln(2+a) +2 ∫_0 ^(π/4)  ln(1+(a/(2+a))cos(2x))dx  we have ln^′ (1+u) =(1/(1+u)) =Σ_(n=0) ^∞  (−1)^n  u^n  ⇒ln(1+u) =Σ_(n=0) ^∞  (((−1)^n  u^(n+1) )/(n+1)) +c(c=0)  =Σ_(n=1) ^∞  (((−1)^(n−1)  u^n )/n) ⇒∫_0 ^(π/4) ln(1+(a/(a+2)) cos(2x))dx  =_(2x=t)    ∫_0 ^(π/2)  ln(1+(a/(a+2))cost)(dt/2) =(1/2) ∫_0 ^(π/2) (Σ_(n=1) ^∞  (((−1)^(n−1) )/n)((a/(a+2)) cost)^n )dt  =(1/2)Σ_(n=1) ^∞  (((−1)^(n−1) )/n)((a/(a+2)))^n  ∫_0 ^(π/2)  cos^n t dt =(1/2)Σ_(n=1) ^∞ (((−1)^(n−1) )/n)w_n ((a/(a+2)))^n   with w_n =∫_0 ^(π/2)  cos^n  t dt (wsllis integral) ⇒  f(a) =(π/2)(ln(2+a)−ln2) +Σ_(n=1) ^∞  (((−1)^(n−1) )/n)w_n ((a/(a+2)))^n   ....be continued...
letdeterminef(a)=π4π4ln(1+acos2x)dxatformofserief(a)=20π4ln(1+a×1+cos(2x)2)dx=20π4ln(2+a+acos(2x))dx2×π4ln(2)+20π4ln{(2+a)(1+a2+acos(2x)}dx=π2ln(2)+π2ln(2+a)+20π4ln(1+a2+acos(2x))dxwehaveln(1+u)=11+u=n=0(1)nunln(1+u)=n=0(1)nun+1n+1+c(c=0)=n=1(1)n1unn0π4ln(1+aa+2cos(2x))dx=2x=t0π2ln(1+aa+2cost)dt2=120π2(n=1(1)n1n(aa+2cost)n)dt=12n=1(1)n1n(aa+2)n0π2cosntdt=12n=1(1)n1nwn(aa+2)nwithwn=0π2cosntdt(wsllisintegral)f(a)=π2(ln(2+a)ln2)+n=1(1)n1nwn(aa+2)n.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *