Menu Close

caculate-D-x-2-y-2-e-x-2-y-2-dxdy-with-D-x-y-R-2-x-2-y-2-4-




Question Number 46848 by maxmathsup by imad last updated on 01/Nov/18
caculate  ∫∫_D   (x^2 −y^2 ) e^(−x^2  −y^2 ) dxdy  with  D ={(x,y)∈R^2 /   x^2  +y^2  ≤4}
caculateD(x2y2)ex2y2dxdywithD={(x,y)R2/x2+y24}
Commented by maxmathsup by imad last updated on 03/Nov/18
let consider the diffeomrphisme (r,θ) →ϕ(r,θ)=(x,y) /  x =r cosθ and y =rsinθ  we have x^2  +y^2 ≤4 ⇒0<r≤2   and 0≤θ≤2π  ∫∫_D (x^2 −y^2 )e^(−(x^2 +y^2 ))  dx =∫∫_W foϕ(r,θ)rdrdθ  =∫∫_(0<r≤2) r^2 {cos^2 θ −sin^2 θ}e^(−r^2 ) r dr dθ  =∫_0 ^2  r^3  e^(−r^2 ) dr .∫_0 ^(2π)  cos2θ dθ  but  ∫_0 ^(2π)  cos(2θ)dθ =[((sin(2θ))/2)]_0 ^(2π) =0 ⇒  I =0 .
letconsiderthediffeomrphisme(r,θ)φ(r,θ)=(x,y)/x=rcosθandy=rsinθwehavex2+y240<r2and0θ2πD(x2y2)e(x2+y2)dx=Wfoφ(r,θ)rdrdθ=0<r2r2{cos2θsin2θ}er2rdrdθ=02r3er2dr.02πcos2θdθbut02πcos(2θ)dθ=[sin(2θ)2]02π=0I=0.

Leave a Reply

Your email address will not be published. Required fields are marked *