calcilate-pi-6-pi-4-sin-x-cos-x-cos-2x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 40505 by prof Abdo imad last updated on 23/Jul/18 calcilate∫π6π4sin(x)cos(x)+cos(2x)dx Answered by MJS last updated on 23/Jul/18 cos2x=2cos2x−1∫sinx2cos2x+cosx−1dx=[t=cosx→dx=−dtsinx]=−∫dt2t2+t−1=−∫dt(2t−1)(t+1)==13∫dtt+1−23∫dt2t−1==13ln(t+1)−13ln(2t−1)=13lnt+12t−1==13ln∣cosx+12cosx−1∣+C∫π4π6sinxcosx+cos2xdx=13(ln4+322−ln5+334)≈.160153 Commented by math khazana by abdo last updated on 23/Jul/18 thankyousirMjs. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-u-n-k-1-n-1-n-2-k-find-lim-n-n-1-n-u-n-Next Next post: if-f-f-x-x-2-x-1-find-f-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.