Menu Close

calcilate-pi-6-pi-4-sin-x-cos-x-cos-2x-dx-




Question Number 40505 by prof Abdo imad last updated on 23/Jul/18
calcilate ∫_(π/6) ^(π/4)    ((sin(x))/(cos(x) +cos(2x)))dx
$${calcilate}\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{4}}} \:\:\:\frac{{sin}\left({x}\right)}{{cos}\left({x}\right)\:+{cos}\left(\mathrm{2}{x}\right)}{dx} \\ $$
Answered by MJS last updated on 23/Jul/18
cos 2x=2cos^2  x −1  ∫((sin x)/(2cos^2  x +cos x −1))dx=       [t=cos x → dx=−(dt/(sin x))]  =−∫(dt/(2t^2 +t−1))=−∫(dt/((2t−1)(t+1)))=  =(1/3)∫(dt/(t+1))−(2/3)∫(dt/(2t−1))=  =(1/3)ln(t+1)−(1/3)ln(2t−1)=(1/3)ln ((t+1)/(2t−1))=  =(1/3)ln∣((cos x +1)/(2cos x −1))∣+C  ∫_(π/6) ^(π/4) ((sin x)/(cos x +cos 2x))dx=(1/3)(ln ((4+3(√2))/2) −ln ((5+3(√3))/4))≈.160153
$$\mathrm{cos}\:\mathrm{2}{x}=\mathrm{2cos}^{\mathrm{2}} \:{x}\:−\mathrm{1} \\ $$$$\int\frac{\mathrm{sin}\:{x}}{\mathrm{2cos}^{\mathrm{2}} \:{x}\:+\mathrm{cos}\:{x}\:−\mathrm{1}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{cos}\:{x}\:\rightarrow\:{dx}=−\frac{{dt}}{\mathrm{sin}\:{x}}\right] \\ $$$$=−\int\frac{{dt}}{\mathrm{2}{t}^{\mathrm{2}} +{t}−\mathrm{1}}=−\int\frac{{dt}}{\left(\mathrm{2}{t}−\mathrm{1}\right)\left({t}+\mathrm{1}\right)}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int\frac{{dt}}{{t}+\mathrm{1}}−\frac{\mathrm{2}}{\mathrm{3}}\int\frac{{dt}}{\mathrm{2}{t}−\mathrm{1}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\left({t}+\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\left(\mathrm{2}{t}−\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\frac{{t}+\mathrm{1}}{\mathrm{2}{t}−\mathrm{1}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\mid\frac{\mathrm{cos}\:{x}\:+\mathrm{1}}{\mathrm{2cos}\:{x}\:−\mathrm{1}}\mid+{C} \\ $$$$\underset{\frac{\pi}{\mathrm{6}}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\frac{\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}\:+\mathrm{cos}\:\mathrm{2}{x}}{dx}=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{ln}\:\frac{\mathrm{4}+\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{2}}\:−\mathrm{ln}\:\frac{\mathrm{5}+\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}}\right)\approx.\mathrm{160153} \\ $$
Commented by math khazana by abdo last updated on 23/Jul/18
thank you sir Mjs.
$${thank}\:{you}\:{sir}\:{Mjs}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *