Menu Close

calcilate-pi-6-pi-4-sin-x-cos-x-cos-2x-dx-




Question Number 40505 by prof Abdo imad last updated on 23/Jul/18
calcilate ∫_(π/6) ^(π/4)    ((sin(x))/(cos(x) +cos(2x)))dx
calcilateπ6π4sin(x)cos(x)+cos(2x)dx
Answered by MJS last updated on 23/Jul/18
cos 2x=2cos^2  x −1  ∫((sin x)/(2cos^2  x +cos x −1))dx=       [t=cos x → dx=−(dt/(sin x))]  =−∫(dt/(2t^2 +t−1))=−∫(dt/((2t−1)(t+1)))=  =(1/3)∫(dt/(t+1))−(2/3)∫(dt/(2t−1))=  =(1/3)ln(t+1)−(1/3)ln(2t−1)=(1/3)ln ((t+1)/(2t−1))=  =(1/3)ln∣((cos x +1)/(2cos x −1))∣+C  ∫_(π/6) ^(π/4) ((sin x)/(cos x +cos 2x))dx=(1/3)(ln ((4+3(√2))/2) −ln ((5+3(√3))/4))≈.160153
cos2x=2cos2x1sinx2cos2x+cosx1dx=[t=cosxdx=dtsinx]=dt2t2+t1=dt(2t1)(t+1)==13dtt+123dt2t1==13ln(t+1)13ln(2t1)=13lnt+12t1==13lncosx+12cosx1+Cπ4π6sinxcosx+cos2xdx=13(ln4+322ln5+334).160153
Commented by math khazana by abdo last updated on 23/Jul/18
thank you sir Mjs.
thankyousirMjs.

Leave a Reply

Your email address will not be published. Required fields are marked *