Menu Close

calcul-en-fonction-de-n-k-0-n-3-k-1-k-n-k-0-k-n-sin-kx-k-n-




Question Number 163111 by SANOGO last updated on 03/Jan/22
calcul en fonction de n   Σ_(k=0) ^n 3^(k−1) (_k ^n )  Σ_(k=0) ^(k=n) sin(kx)(_k ^n )
$${calcul}\:{en}\:{fonction}\:{de}\:{n} \\ $$$$\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\mathrm{3}^{{k}−\mathrm{1}} \left(_{{k}} ^{{n}} \right) \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{k}={n}} {\sum}}{sin}\left({kx}\right)\left(_{{k}} ^{{n}} \right) \\ $$$$ \\ $$
Answered by Mathspace last updated on 04/Jan/22
A_(n=Σ_(k=0) ^m  C_n ^k  sin(kx) ⇒)   A_n =Im(Σ_(k=0) ^n  C_n ^k  e^(ikx) ) and  Σ_(k=0) ^n  C_n ^k (e^(ix) )^k =(1+e^(ix) )^n   =(1+cosx +isinx)^n   =(2cos^2 ((x/2))+2isin((x/2))cos((x/2)))^n   =2^n cos^n ((x/2))(e^((ix)/2) )^n   =2^n  cos^n ((x/2)){cos(((nx)/2))+isin(((nx)/2))} ⇒  A_n =2^n  cos^n ((x/2))sin(((nx)/2))
$${A}_{{n}=\sum_{{k}=\mathrm{0}} ^{{m}} \:{C}_{{n}} ^{{k}} \:{sin}\left({kx}\right)\:\Rightarrow} \\ $$$${A}_{{n}} ={Im}\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{e}^{{ikx}} \right)\:{and} \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \left({e}^{{ix}} \right)^{{k}} =\left(\mathrm{1}+{e}^{{ix}} \right)^{{n}} \\ $$$$=\left(\mathrm{1}+{cosx}\:+{isinx}\right)^{{n}} \\ $$$$=\left(\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)+\mathrm{2}{isin}\left(\frac{{x}}{\mathrm{2}}\right){cos}\left(\frac{{x}}{\mathrm{2}}\right)\right)^{{n}} \\ $$$$=\mathrm{2}^{{n}} {cos}^{{n}} \left(\frac{{x}}{\mathrm{2}}\right)\left({e}^{\frac{{ix}}{\mathrm{2}}} \right)^{{n}} \\ $$$$=\mathrm{2}^{{n}} \:{cos}^{{n}} \left(\frac{{x}}{\mathrm{2}}\right)\left\{{cos}\left(\frac{{nx}}{\mathrm{2}}\right)+{isin}\left(\frac{{nx}}{\mathrm{2}}\right)\right\}\:\Rightarrow \\ $$$${A}_{{n}} =\mathrm{2}^{{n}} \:{cos}^{{n}} \left(\frac{{x}}{\mathrm{2}}\right){sin}\left(\frac{{nx}}{\mathrm{2}}\right) \\ $$
Commented by SANOGO last updated on 04/Jan/22
merci bien
$${merci}\:{bien} \\ $$
Answered by Mathspace last updated on 04/Jan/22
U_n =Σ_(k=0) ^(n )  C_n ^k  3^(k−1 ) ⇒  U_n =(1/3)Σ_(k=0) ^n  C_n ^k  3^k   =(1/3)(3+1)^n  =(4^n /3)
$${U}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}\:} \:{C}_{{n}} ^{{k}} \:\mathrm{3}^{{k}−\mathrm{1}\:} \Rightarrow \\ $$$${U}_{{n}} =\frac{\mathrm{1}}{\mathrm{3}}\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\mathrm{3}^{{k}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{3}+\mathrm{1}\right)^{{n}} \:=\frac{\mathrm{4}^{{n}} }{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *