Menu Close

Calcul-n-3-2n-1-n-n-2-n-2-




Question Number 181260 by lapache last updated on 23/Nov/22
Calcul   Σ_(n=3) ^(+∞)  ((2n−1)/(n(n+2)(n−2)))=...??
$${Calcul}\: \\ $$$$\underset{{n}=\mathrm{3}} {\overset{+\infty} {\sum}}\:\frac{\mathrm{2}{n}−\mathrm{1}}{{n}\left({n}+\mathrm{2}\right)\left({n}−\mathrm{2}\right)}=…?? \\ $$
Answered by SEKRET last updated on 23/Nov/22
((89)/(96))
$$\frac{\mathrm{89}}{\mathrm{96}} \\ $$
Answered by SEKRET last updated on 23/Nov/22
Σ_(n=3) ^∞ ( (1/(4n))−(5/(8(n+2)))+(3/(8(n−2))))=  = Σ_(n=3) ^∞ ((1/(4n)) − (2/(8(n+2))) − (3/(8(n+2))) + (3/(8(n−2))))=   (1/4)∙Σ_(n=3) ^∞ ((1/n) − (1/(n+2))) + (3/8)Σ_(n=3) ^∞ ((1/(n−2)) − (1/(n+2)))=S_1 +S_2   S_1 =(1/4)∙((1/3)−(1/5)+(1/4)−(1/6)+(1/5)−(1/7)+(1/6)−(1/8)...)=  = (1/4)∙((1/3)+(1/4))=(7/(48))  S_2 = (3/8)∙((1/1)−(1/5)+(1/2)−(1/6)+(1/3)−(1/7)+(1/4)−(1/8)+(1/5)−(1/9)+(1/6)−(1/(10))+....)  =(3/8)∙(1+(1/2)+(1/3)+(1/4))=(3/8)∙((12+6+4+3)/(12))=((25)/(32))  S_1 +S_2 =(7/(48))+((25)/(32))=(7/(2∙3∙8))+((25)/(2∙2∙8))=((14)/(96))+((75)/(96))=((89)/(96))   Σ_(n=3) ^∞    ((2n−1)/(n (n+2)(n−2)))  =  ((89)/(96))  ABDULAZIZ   ABDUVALIYEV
$$\sum_{\boldsymbol{\mathrm{n}}=\mathrm{3}} ^{\infty} \left(\:\frac{\mathrm{1}}{\mathrm{4}\boldsymbol{\mathrm{n}}}−\frac{\mathrm{5}}{\mathrm{8}\left(\boldsymbol{\mathrm{n}}+\mathrm{2}\right)}+\frac{\mathrm{3}}{\mathrm{8}\left(\boldsymbol{\mathrm{n}}−\mathrm{2}\right)}\right)= \\ $$$$=\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{3}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{4}\boldsymbol{\mathrm{n}}}\:−\:\frac{\mathrm{2}}{\mathrm{8}\left(\boldsymbol{\mathrm{n}}+\mathrm{2}\right)}\:−\:\frac{\mathrm{3}}{\mathrm{8}\left(\boldsymbol{\mathrm{n}}+\mathrm{2}\right)}\:+\:\frac{\mathrm{3}}{\mathrm{8}\left(\boldsymbol{\mathrm{n}}−\mathrm{2}\right)}\right)= \\ $$$$\:\frac{\mathrm{1}}{\mathrm{4}}\centerdot\underset{\boldsymbol{\mathrm{n}}=\mathrm{3}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}}\:−\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}+\mathrm{2}}\right)\:+\:\frac{\mathrm{3}}{\mathrm{8}}\underset{\boldsymbol{\mathrm{n}}=\mathrm{3}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}−\mathrm{2}}\:−\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}+\mathrm{2}}\right)=\boldsymbol{\mathrm{S}}_{\mathrm{1}} +\boldsymbol{\mathrm{S}}_{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{S}}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{4}}\centerdot\left(\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{7}}+\frac{\mathrm{1}}{\mathrm{6}}−\frac{\mathrm{1}}{\mathrm{8}}…\right)= \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\centerdot\left(\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}\right)=\frac{\mathrm{7}}{\mathrm{48}} \\ $$$$\boldsymbol{\mathrm{S}}_{\mathrm{2}} =\:\frac{\mathrm{3}}{\mathrm{8}}\centerdot\left(\frac{\mathrm{1}}{\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{7}}+\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{9}}+\frac{\mathrm{1}}{\mathrm{6}}−\frac{\mathrm{1}}{\mathrm{10}}+….\right) \\ $$$$=\frac{\mathrm{3}}{\mathrm{8}}\centerdot\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}\right)=\frac{\mathrm{3}}{\mathrm{8}}\centerdot\frac{\mathrm{12}+\mathrm{6}+\mathrm{4}+\mathrm{3}}{\mathrm{12}}=\frac{\mathrm{25}}{\mathrm{32}} \\ $$$$\boldsymbol{\mathrm{S}}_{\mathrm{1}} +\boldsymbol{\mathrm{S}}_{\mathrm{2}} =\frac{\mathrm{7}}{\mathrm{48}}+\frac{\mathrm{25}}{\mathrm{32}}=\frac{\mathrm{7}}{\mathrm{2}\centerdot\mathrm{3}\centerdot\mathrm{8}}+\frac{\mathrm{25}}{\mathrm{2}\centerdot\mathrm{2}\centerdot\mathrm{8}}=\frac{\mathrm{14}}{\mathrm{96}}+\frac{\mathrm{75}}{\mathrm{96}}=\frac{\mathrm{89}}{\mathrm{96}} \\ $$$$\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{3}} {\overset{\infty} {\sum}}\:\:\:\frac{\mathrm{2}\boldsymbol{\mathrm{n}}−\mathrm{1}}{\boldsymbol{\mathrm{n}}\:\left(\boldsymbol{\mathrm{n}}+\mathrm{2}\right)\left(\boldsymbol{\mathrm{n}}−\mathrm{2}\right)}\:\:=\:\:\frac{\mathrm{89}}{\mathrm{96}} \\ $$$$\boldsymbol{{ABDULAZIZ}}\:\:\:\boldsymbol{{ABDUVALIYEV}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *