calculale-A-n-cos-x-n-1-x-2-dx-with-n-integr-natural- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42680 by prof Abdo imad last updated on 31/Aug/18 calculaleAn(α)=∫−∞+∞cos(αxn)1+x2dxwithnintegrnatural. Commented by prof Abdo imad last updated on 31/Aug/18 αreal. Commented by maxmathsup by imad last updated on 01/Sep/18 wehaveAn(α)=Re(∫−∞+∞eiαxn1+x2dx)letconsiderthecomlexfunctionφ(z)=eiαzn1+z2⇒φ(z)=eiαzn(z−i)(z+i)thepolesofφare+−i∫−∞+∞φ(z)dz=2iπRes(φ,i)butRes(φ,i)=eiαin2i⇒∫−∞+∞φ(z)dz=2iπeiαin2i=πeiα(−1)n2=π{cos((−1)n2α)+isin((−1)n2α)}⇒An=πcos{(−1)n2α}⇒A2n=πcos{(−1)nα}andA2n+1=πcos{i(−1)nα}butcosz=eiz+e−iz2⇒cos(ix)=e−x+ex2=ch(x)(x∈R)⇒A2n+1=πch{(−1)nα}. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-pi-4-pi-3-sinx-cosx-tanx-dx-Next Next post: Question-108219 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.