Menu Close

calculale-A-n-cos-x-n-1-x-2-dx-with-n-integr-natural-




Question Number 42680 by prof Abdo imad last updated on 31/Aug/18
calculale  A_n (α) = ∫_(−∞) ^(+∞)    ((cos(αx^n ))/(1+x^2 )) dx with  n integr natural.
calculaleAn(α)=+cos(αxn)1+x2dxwithnintegrnatural.
Commented by prof Abdo imad last updated on 31/Aug/18
α real.
αreal.
Commented by maxmathsup by imad last updated on 01/Sep/18
we have A_n (α) =Re( ∫_(−∞) ^(+∞)    (e^(iαx^n ) /(1+x^2 )) dx) let consider the comlex function  ϕ(z) =(e^(iαz^n ) /(1+z^2 ))    ⇒ϕ(z) = (e^(iαz^n ) /((z−i)(z+i))) the poles of ϕ are +^− i  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ,i) but   Res(ϕ,i)= (e^(iαi^n ) /(2i)) ⇒  ∫_(−∞) ^(+∞)    ϕ(z)dz =2iπ (e^(iαi^n ) /(2i)) =π e^(iα(−1)^(n/2) )  =π{ cos((−1)^(n/2) α)+isin((−1)^(n/2) α)} ⇒  A_n = π cos{(−1)^(n/2) α} ⇒ A_(2n) = π  cos{(−1)^n α} and  A_(2n+1) =π cos{i(−1)^n α}   but  cosz =((e^(iz)  +e^(−iz) )/2) ⇒cos(ix)=((e^(−x)  +e^x )/2) =ch(x)  (x∈R) ⇒ A_(2n+1) =π  ch{(−1)^n α} .
wehaveAn(α)=Re(+eiαxn1+x2dx)letconsiderthecomlexfunctionφ(z)=eiαzn1+z2φ(z)=eiαzn(zi)(z+i)thepolesofφare+i+φ(z)dz=2iπRes(φ,i)butRes(φ,i)=eiαin2i+φ(z)dz=2iπeiαin2i=πeiα(1)n2=π{cos((1)n2α)+isin((1)n2α)}An=πcos{(1)n2α}A2n=πcos{(1)nα}andA2n+1=πcos{i(1)nα}butcosz=eiz+eiz2cos(ix)=ex+ex2=ch(x)(xR)A2n+1=πch{(1)nα}.

Leave a Reply

Your email address will not be published. Required fields are marked *