Question Number 42680 by prof Abdo imad last updated on 31/Aug/18
$${calculale}\:\:{A}_{{n}} \left(\alpha\right)\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\alpha{x}^{{n}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\:{with} \\ $$$${n}\:{integr}\:{natural}. \\ $$$$ \\ $$
Commented by prof Abdo imad last updated on 31/Aug/18
$$\alpha\:{real}. \\ $$
Commented by maxmathsup by imad last updated on 01/Sep/18
$${we}\:{have}\:{A}_{{n}} \left(\alpha\right)\:={Re}\left(\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{{i}\alpha{x}^{{n}} } }{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\right)\:{let}\:{consider}\:{the}\:{comlex}\:{function} \\ $$$$\varphi\left({z}\right)\:=\frac{{e}^{{i}\alpha{z}^{{n}} } }{\mathrm{1}+{z}^{\mathrm{2}} }\:\:\:\:\Rightarrow\varphi\left({z}\right)\:=\:\frac{{e}^{{i}\alpha{z}^{{n}} } }{\left({z}−{i}\right)\left({z}+{i}\right)}\:{the}\:{poles}\:{of}\:\varphi\:{are}\:\overset{−} {+}{i} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right)\:{but}\:\:\:{Res}\left(\varphi,{i}\right)=\:\frac{{e}^{{i}\alpha{i}^{{n}} } }{\mathrm{2}{i}}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{e}^{{i}\alpha{i}^{{n}} } }{\mathrm{2}{i}}\:=\pi\:{e}^{{i}\alpha\left(−\mathrm{1}\right)^{\frac{{n}}{\mathrm{2}}} } \:=\pi\left\{\:{cos}\left(\left(−\mathrm{1}\right)^{\frac{{n}}{\mathrm{2}}} \alpha\right)+{isin}\left(\left(−\mathrm{1}\right)^{\frac{{n}}{\mathrm{2}}} \alpha\right)\right\}\:\Rightarrow \\ $$$${A}_{{n}} =\:\pi\:{cos}\left\{\left(−\mathrm{1}\right)^{\frac{{n}}{\mathrm{2}}} \alpha\right\}\:\Rightarrow\:{A}_{\mathrm{2}{n}} =\:\pi\:\:{cos}\left\{\left(−\mathrm{1}\right)^{{n}} \alpha\right\}\:{and} \\ $$$${A}_{\mathrm{2}{n}+\mathrm{1}} =\pi\:{cos}\left\{{i}\left(−\mathrm{1}\right)^{{n}} \alpha\right\}\:\:\:{but}\:\:{cosz}\:=\frac{{e}^{{iz}} \:+{e}^{−{iz}} }{\mathrm{2}}\:\Rightarrow{cos}\left({ix}\right)=\frac{{e}^{−{x}} \:+{e}^{{x}} }{\mathrm{2}}\:={ch}\left({x}\right) \\ $$$$\left({x}\in{R}\right)\:\Rightarrow\:{A}_{\mathrm{2}{n}+\mathrm{1}} =\pi\:\:{ch}\left\{\left(−\mathrm{1}\right)^{{n}} \alpha\right\}\:. \\ $$