Menu Close

Calculas-1-2-2-2-3-2-16-2-16-1-3-2-4-3-5-15-17-




Question Number 177144 by Shrinava last updated on 01/Oct/22
Calculas:  ((1^2  + 2^2  + 3^2  + ... + 16^2  − 16)/(1∙3 + 2∙4 + 3∙5 + ... + 15∙17))
$$\mathrm{Calculas}: \\ $$$$\frac{\mathrm{1}^{\mathrm{2}} \:+\:\mathrm{2}^{\mathrm{2}} \:+\:\mathrm{3}^{\mathrm{2}} \:+\:…\:+\:\mathrm{16}^{\mathrm{2}} \:−\:\mathrm{16}}{\mathrm{1}\centerdot\mathrm{3}\:+\:\mathrm{2}\centerdot\mathrm{4}\:+\:\mathrm{3}\centerdot\mathrm{5}\:+\:…\:+\:\mathrm{15}\centerdot\mathrm{17}} \\ $$
Answered by BaliramKumar last updated on 01/Oct/22
= ((1^2 +2^2 +3^2 +..........+16^2  − 16)/((2^2 −1)+(3^2 −1)+(4^2 −1)+...........+(16^2 −1)))  = ((1^2 +2^2 +3^2 +..........+16^2  − 16)/(2^2 +3^2 +4^2 +...........+16^2 −15))  = ((1^2 +2^2 +3^2 +..........+16^2  − 16)/(1^2 +2^2 +3^2 +4^2 +...........+16^2 −15−1^2 ))  = ((1^2 +2^2 +3^2 +..........+16^2  − 16)/(1^2 +2^2 +3^2 +4^2 +...........+16^2 −16))  =  determinant ((1)) Answer
$$=\:\frac{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +……….+\mathrm{16}^{\mathrm{2}} \:−\:\mathrm{16}}{\left(\mathrm{2}^{\mathrm{2}} −\mathrm{1}\right)+\left(\mathrm{3}^{\mathrm{2}} −\mathrm{1}\right)+\left(\mathrm{4}^{\mathrm{2}} −\mathrm{1}\right)+………..+\left(\mathrm{16}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$$$=\:\frac{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +……….+\mathrm{16}^{\mathrm{2}} \:−\:\mathrm{16}}{\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} +………..+\mathrm{16}^{\mathrm{2}} −\mathrm{15}} \\ $$$$=\:\frac{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +……….+\mathrm{16}^{\mathrm{2}} \:−\:\mathrm{16}}{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} +………..+\mathrm{16}^{\mathrm{2}} −\mathrm{15}−\mathrm{1}^{\mathrm{2}} } \\ $$$$=\:\frac{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +……….+\mathrm{16}^{\mathrm{2}} \:−\:\mathrm{16}}{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} +………..+\mathrm{16}^{\mathrm{2}} −\mathrm{16}} \\ $$$$=\:\begin{array}{|c|}{\mathrm{1}}\\\hline\end{array}\:{Answer} \\ $$$$ \\ $$$$ \\ $$
Commented by Tawa11 last updated on 02/Oct/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *