Menu Close

calculate-0-1-1-t-2-1-2-dt-




Question Number 26055 by abdo imad last updated on 18/Dec/17
calculate   ∫_0 ^1  (1+t^2 )^(1/2) dt
calculate01(1+t2)1/2dt
Answered by Joel578 last updated on 19/Dec/17
I = ∫_0 ^1 (√(t^2  + 1)) dt  Let t = tan x  →  dt = sec^2  x dx  t = 0  →  x = 0  t = 1  →  x = (π/4)  I = ∫_0 ^(π/4)  (√(tan^2  x + 1))  . sec^2  x dx      = ∫_0 ^(π/4)  sec^3  x dx  Using IBP  give:      = [(1/2)(sec x tan x) − (1/2)ln ∣sec x + tan x∣]_0 ^(π/4)       = [((√2)/2) − (1/2)ln ((√2) + 1)] − [− (1/2)ln (1)]      = ((√2)/2) − (1/2)ln ((√2) + 1)
I=01t2+1dtLett=tanxdt=sec2xdxt=0x=0t=1x=π4I=0π/4tan2x+1.sec2xdx=0π/4sec3xdxUsingIBPgive:=[12(secxtanx)12lnsecx+tanx]0π/4=[2212ln(2+1)][12ln(1)]=2212ln(2+1)

Leave a Reply

Your email address will not be published. Required fields are marked *