Menu Close

calculate-0-1-1-x-3-1-x-4-dx-




Question Number 47058 by maxmathsup by imad last updated on 04/Nov/18
calculate ∫_0 ^1   ((1+x^3 )/(1+x^4 ))dx
calculate011+x31+x4dx
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Nov/18
∫(dx/(1+x^4 ))+(1/4)∫((4x^3 )/(1+x^4 ))dx  I_1 +I_2   I_2 =(1/4)∫((4x^3 )/(1+x^4 ))dx  =(1/4)ln(1+x^4 )+c_2   j_2 =∣I_2 ∣_0 ^1 =(1/4)ln(1+1)−(1/4)ln(1+0)→(1/4)ln2  I_1 =(1/2)∫((2/x^2 )/((1/x^2 )+x^2 ))dx  =(1/2)[∫(((1+(1/x^2 ))−(1−(1/x^2 )))/(x^2 +(1/x^2 )))dx  =(1/2)[∫((d(x−(1/x)))/((x−(1/x))^2 +2))−∫((d(x+(1/x)))/((x+(1/x))^2 −2))]  =(1/2)[(1/( (√2)))tan^(−1) (((x−(1/x))/( (√2))))−(1/(2(√2)))ln∣(((x+(1/x)−(√2))/(x+(1/x)+(√2))))∣]+c_1   =(1/2)[(1/( (√2)))tan^(−1) (((x^2 −1)/(x(√2))))−(1/(2(√2)))ln∣(((x^2 +1−x(√2))/(x^2 +1+x(√2) )))∣  j_1 =∣I_1 ∣_0 ^1   j_1 =(1/2)[{(1/( (√2)))tan^(−1) (((1−1)/(1×(√2))))−(1/( (√2)))tan^(−1) (((0−1)/(0×(√2))))}−      (1/(2(√2)))ln∣(((1+1−(√2))/(1+1+(√2))))∣−(1/(2(√2)))ln∣((1/1))]  =(1/2)[{(1/( (√2)))×0−(1/( (√2)))(−(π/2))}−(1/(2(√2)))ln(((2−(√2))/(2+(√2))))]  =(π/(4(√2)))−(1/(2(√2)))ln(((2−(√2))/(2+(√2))))        now put limit...
dx1+x4+144x31+x4dxI1+I2I2=144x31+x4dx=14ln(1+x4)+c2j2=∣I201=14ln(1+1)14ln(1+0)14ln2I1=122x21x2+x2dx=12[(1+1x2)(11x2)x2+1x2dx=12[d(x1x)(x1x)2+2d(x+1x)(x+1x)22]=12[12tan1(x1x2)122ln(x+1x2x+1x+2)]+c1=12[12tan1(x21x2)122ln(x2+1x2x2+1+x2)j1=∣I101j1=12[{12tan1(111×2)12tan1(010×2)}122ln(1+121+1+2)122ln(11)]=12[{12×012(π2)}122ln(222+2)]=π42122ln(222+2)nowputlimit

Leave a Reply

Your email address will not be published. Required fields are marked *