Menu Close

calculate-0-1-1-x-ln-1-x-1-x-dx-




Question Number 33984 by abdo imad last updated on 28/Apr/18
calculate ∫_0 ^1   (1/x)ln(((1+x)/(1−x)))dx
calculate011xln(1+x1x)dx
Commented by prof Abdo imad last updated on 29/Apr/18
let put  I = ∫_0 ^1  (1/x)ln(((1+x)/(1−x)))dx  I = ∫_0 ^1  (1/x)ln(1+x)dx −∫_0 ^1 (1/x) ln(1−x)dx but we  have ln^′ (1+x)= (1/(1+x))=Σ_(n=0) ^∞ (−1)^n x^n ⇒  ln(1+x)= Σ_(n=0) ^∞ (((−1)^n )/(n+1))x^(n+1)  +λ= Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^n  +λ  λ =0 ⇒∫_0 ^1 (1/x)ln(1+x)dx= ∫_0 ^1  (1/x)( Σ_(n=1) ^∞  (((−1)^(n−1) )/n)x^n )dx  = Σ_(n=1) ^∞   (((−1)^(n−1) )/n) ∫_0 ^1  x^(n−1) dx  = Σ_(n=1) ^∞    (((−1)^(n−1) )/n^2 ) =−Σ_(n=1) ^∞  (((−1)^n )/n^2 )  =−( (1/4)Σ_(n=1) ^∞  (1/n^2 ) −Σ_(n=0) ^∞  (1/((2n+1)^2 )))  =Σ_(n=0) ^∞   (1/((2n+1)^2 )) −(1/4) Σ_(n=1) ^∞   (1/n^2 )  = (π^2 /8) −(1/4) (π^2 /6) = ((3π^2 )/(24)) −(π^2 /(24)) =(π^2 /(12))  .let calculate  ∫_0 ^1   (1/x)ln(1−x)dx  we have  ln^′ (1−x) = ((−1)/(1−x)) =−Σ_(n=0) ^∞  x^n  ⇒  ln(1−x) = −Σ_(n=0) ^∞  (x^(n+1) /(n+1))+λ =−Σ_(n=1) ^∞  (x^n /n) +λ  λ=0 ⇒ ∫_0 ^1 (1/x)ln(1−x)dx =−∫_0 ^1  (Σ_(n=1) ^∞  (x^(n−1) /n))dx  =−Σ_(n=1) ^∞   (1/n) ∫_0 ^1  x^(n−1) dx=−Σ_(n=1) ^∞  (1/n^2 ) =−(π^2 /6) ⇒  I = (π^2 /(12)) +(π^2 /6) = ((3π^2 )/(12)) = (π^2 /4)  ★ I =(π^2 /4) ★
letputI=011xln(1+x1x)dxI=011xln(1+x)dx011xln(1x)dxbutwehaveln(1+x)=11+x=n=0(1)nxnln(1+x)=n=0(1)nn+1xn+1+λ=n=1(1)n1nxn+λλ=0011xln(1+x)dx=011x(n=1(1)n1nxn)dx=n=1(1)n1n01xn1dx=n=1(1)n1n2=n=1(1)nn2=(14n=11n2n=01(2n+1)2)=n=01(2n+1)214n=11n2=π2814π26=3π224π224=π212.letcalculate011xln(1x)dxwehaveln(1x)=11x=n=0xnln(1x)=n=0xn+1n+1+λ=n=1xnn+λλ=0011xln(1x)dx=01(n=1xn1n)dx=n=11n01xn1dx=n=11n2=π26I=π212+π26=3π212=π24I=π24
Answered by hknkrc46 last updated on 29/Apr/18
ln (((1+x)/(1−x)))=ln ((((1+x)(1+x))/((1−x)(1+x))))=ln ((((1+x)^2 )/(1−x^2 )))  =ln (((1+x)/( (√(1−x^2 )))))^2 =2ln ((1+x)/( (√(1−x^2 ))))  ∫(1/x)ln (((1+x)/(1−x)))dx=2∫((1+x)/(x(√(1−x^2 ))))dx→ { ((x=cos 2ψ⇒dx=−2sin2 ψdψ)),((x→0,ψ→(π/4)∧x→1,ψ→0)) :}  −2∫(((1+cos 2ψ)sin 2ψ)/(cos 2ψ(√(1−cos^2 2ψ))))dψ=−2∫((2cos^2 ψsin 2ψ)/(cos 2ψsin 2ψ))dψ  =−4∫((cos^2 ψ)/(cos 2ψ))dψ=−4∫((1−sin^2 ψ)/(cos 2ψ))dψ  =−4∫sec 2ψdψ+4∫((sin^2 ψ)/(cos 2ψ))dψ  =−4∫sec 2ψdψ+4∫(((1−cos 2ψ)/2)/(cos 2ψ))dψ  =−4∫sec 2ψdψ+2∫sec 2ψdψ−2∫dψ  =−2∫sec 2ψdψ−2∫dψ=−2∫(dψ/(cos 2ψ))−2∫dψ  =−2∫(dψ/(cos 2ψ))−2∫dψ=−ln ∣sec 2ψ+tan 2ψ∣−2ψ+C  ∫_0 ^1   (1/x)ln(((1+x)/(1−x)))dx=[−ln ∣sec 2ψ+tan 2ψ∣−2ψ]_(π/4) ^0 =−∞
ln(1+x1x)=ln((1+x)(1+x)(1x)(1+x))=ln((1+x)21x2)=ln(1+x1x2)2=2ln1+x1x21xln(1+x1x)dx=21+xx1x2dx{x=cos2ψdx=2sin2ψdψx0,ψπ4x1,ψ02(1+cos2ψ)sin2ψcos2ψ1cos22ψdψ=22cos2ψsin2ψcos2ψsin2ψdψ=4cos2ψcos2ψdψ=41sin2ψcos2ψdψ=4sec2ψdψ+4sin2ψcos2ψdψ=4sec2ψdψ+41cos2ψ2cos2ψdψ=4sec2ψdψ+2sec2ψdψ2dψ=2sec2ψdψ2dψ=2dψcos2ψ2dψ=2dψcos2ψ2dψ=lnsec2ψ+tan2ψ2ψ+C011xln(1+x1x)dx=[lnsec2ψ+tan2ψ2ψ]π40=

Leave a Reply

Your email address will not be published. Required fields are marked *