calculate-0-1-1-x-ln-1-x-1-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 33984 by abdo imad last updated on 28/Apr/18 calculate∫011xln(1+x1−x)dx Commented by prof Abdo imad last updated on 29/Apr/18 letputI=∫011xln(1+x1−x)dxI=∫011xln(1+x)dx−∫011xln(1−x)dxbutwehaveln′(1+x)=11+x=∑n=0∞(−1)nxn⇒ln(1+x)=∑n=0∞(−1)nn+1xn+1+λ=∑n=1∞(−1)n−1nxn+λλ=0⇒∫011xln(1+x)dx=∫011x(∑n=1∞(−1)n−1nxn)dx=∑n=1∞(−1)n−1n∫01xn−1dx=∑n=1∞(−1)n−1n2=−∑n=1∞(−1)nn2=−(14∑n=1∞1n2−∑n=0∞1(2n+1)2)=∑n=0∞1(2n+1)2−14∑n=1∞1n2=π28−14π26=3π224−π224=π212.letcalculate∫011xln(1−x)dxwehaveln′(1−x)=−11−x=−∑n=0∞xn⇒ln(1−x)=−∑n=0∞xn+1n+1+λ=−∑n=1∞xnn+λλ=0⇒∫011xln(1−x)dx=−∫01(∑n=1∞xn−1n)dx=−∑n=1∞1n∫01xn−1dx=−∑n=1∞1n2=−π26⇒I=π212+π26=3π212=π24★I=π24★ Answered by hknkrc46 last updated on 29/Apr/18 ln(1+x1−x)=ln((1+x)(1+x)(1−x)(1+x))=ln((1+x)21−x2)=ln(1+x1−x2)2=2ln1+x1−x2∫1xln(1+x1−x)dx=2∫1+xx1−x2dx→{x=cos2ψ⇒dx=−2sin2ψdψx→0,ψ→π4∧x→1,ψ→0−2∫(1+cos2ψ)sin2ψcos2ψ1−cos22ψdψ=−2∫2cos2ψsin2ψcos2ψsin2ψdψ=−4∫cos2ψcos2ψdψ=−4∫1−sin2ψcos2ψdψ=−4∫sec2ψdψ+4∫sin2ψcos2ψdψ=−4∫sec2ψdψ+4∫1−cos2ψ2cos2ψdψ=−4∫sec2ψdψ+2∫sec2ψdψ−2∫dψ=−2∫sec2ψdψ−2∫dψ=−2∫dψcos2ψ−2∫dψ=−2∫dψcos2ψ−2∫dψ=−ln∣sec2ψ+tan2ψ∣−2ψ+C∫011xln(1+x1−x)dx=[−ln∣sec2ψ+tan2ψ∣−2ψ]π40=−∞ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: decompose-inside-R-x-the-fraction-F-x-1-x-n-x-1-2-with-n-integr-Next Next post: prove-that-1-1-cosx-2-n-1-n-1-n-1-cos-nx-for-x-kpi-k-Z- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.