Menu Close

calculate-0-1-2-1-x-4-dx-




Question Number 51987 by maxmathsup by imad last updated on 01/Jan/19
calculate ∫_0 ^(1/2) (√(1−x^4 ))dx
calculate0121x4dx
Commented by Abdo msup. last updated on 02/Jan/19
let A =∫_0 ^(1/2) (√(1−x^4 ))dx ⇒A=∫_0 ^(1/2) (√(1−x^2 ))(√(1+x^2 ))dx  =_(x^2 =cost)     ∫_1 ^(π/3) (√(1−cost))(√(1+cost))((−sint)/(2(√(cost)))) dt  =−∫_1 ^(π/3)  (√2)sin((t/2))(√2)cos((t/2))  ((sint)/(2(√(cost))))dt  =−∫_1 ^(π/3)  sin((t/2))cos((t/2)) ((sint)/( (√(cost))))dt  =− ∫_1 ^(π/3)  (1/2) ((sin^2 t)/( (√(cost)))) dt =−(1/2) ∫_1 ^(π/3)  ((1−cos^2 t)/( (√(cost)))) dt  =−(1/2) ∫_1 ^(π/3)  (dt/( (√(cost)))) +∫_1 ^(π/3)   ((cos^2 t)/( (√(cost)))) dt ....  be continued...
letA=0121x4dxA=0121x21+x2dx=x2=cost1π31cost1+costsint2costdt=1π32sin(t2)2cos(t2)sint2costdt=1π3sin(t2)cos(t2)sintcostdt=1π312sin2tcostdt=121π31cos2tcostdt=121π3dtcost+1π3cos2tcostdt.becontinued
Answered by peter frank last updated on 01/Jan/19
∫(√((1+x^2 )(1−x^2 )))  x^2 =sin θ⇒  2xdx=cos θdθ    ∫(√((1+sin θ)(1−sin θ))) dx  ∫(√(1−sin^2  ))   ((cos θdθ)/(2x))    (1/2)∫((cos^2 θdθ)/x)  (1/2)∫((cos^2 θdθ)/( (√(sin θ))))  .....
(1+x2)(1x2)x2=sinθ2xdx=cosθdθ(1+sinθ)(1sinθ)dx1sin2cosθdθ2x12cos2θdθx12cos2θdθsinθ..

Leave a Reply

Your email address will not be published. Required fields are marked *