Menu Close

calculate-0-1-2-x-2-y-2-sin-x-2-y-2-dxdy-




Question Number 62197 by maxmathsup by imad last updated on 17/Jun/19
calculate ∫∫_([0,1]^2 )     (√(x^2 +y^2 ))sin((√(x^2 +y^2 )))dxdy
calculate[0,1]2x2+y2sin(x2+y2)dxdy
Commented by mathmax by abdo last updated on 21/Jun/19
let use the diffeomorphism x =rcosθ  and y =rsinθ  0≤x≤1  and 0≤y≤1 ⇒0≤x^2  +y^2 ≤2 ⇒0≤r^2 ≤2 ⇒0≤r≤(√2)   A=∫∫_([0,1]^2 )    (√(x^2  +y^2 ))sin((√(x^2 +y^2 )))dxdy =∫∫_(0≤r≤(√2)  and 0≤θ≤(π/2))    r sin(r)rdrdθ  =∫_0 ^(√2)   r^2 sin(r)dr ∫_0 ^(π/2)  dθ =(π/2) ∫_0 ^(√2)  r^2 sin(r)dr      by parts  u=r^2  and v^′  =sinr  ∫_0 ^(√2)  r^2  sin(r)dr =[−r^2 cos(r)]_0 ^(√2)  +∫_0 ^(√2) 2r cosrdr  =−2cos((√2)) +2 {  [r sin(r)]_0 ^(√2)   −∫_0 ^(√2)   sinr dr}  =−2cos((√2)) +2{  (√2)sin((√2)) +[cosr]_0 ^(√2) }  =−2cos((√2)) +2(√2)sin((√2)) +2(cos((√2))−1) ⇒  A =(π/2){ −2cos((√2))+2(√2)sin((√2)) +2 cos((√2))−2}=π{(√2)sin((√2))−1} .
letusethediffeomorphismx=rcosθandy=rsinθ0x1and0y10x2+y220r220r2A=[0,1]2x2+y2sin(x2+y2)dxdy=0r2and0θπ2rsin(r)rdrdθ=02r2sin(r)dr0π2dθ=π202r2sin(r)drbypartsu=r2andv=sinr02r2sin(r)dr=[r2cos(r)]02+022rcosrdr=2cos(2)+2{[rsin(r)]0202sinrdr}=2cos(2)+2{2sin(2)+[cosr]02}=2cos(2)+22sin(2)+2(cos(2)1)A=π2{2cos(2)+22sin(2)+2cos(2)2}=π{2sin(2)1}.

Leave a Reply

Your email address will not be published. Required fields are marked *