Question Number 115364 by Bird last updated on 25/Sep/20
$${calculate}\:\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \:\:\sqrt{{xy}}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dxdy} \\ $$
Answered by Olaf last updated on 25/Sep/20
$$\int\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{2}} } \left(\sqrt{{y}}{x}^{\mathrm{5}/\mathrm{2}} +{y}^{\mathrm{5}/\mathrm{2}} \sqrt{{x}}\right){dxdy} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left[\frac{\mathrm{2}}{\mathrm{7}}\sqrt{{y}}{x}^{\mathrm{7}/\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{3}}{y}^{\mathrm{5}/\mathrm{2}} {x}^{\mathrm{3}/\mathrm{2}} \right]_{\mathrm{0}} ^{\mathrm{1}} {dy} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{7}}\sqrt{{y}}+\frac{\mathrm{2}}{\mathrm{3}}{y}^{\mathrm{5}/\mathrm{2}} \right){dy} \\ $$$$=\:\left[\frac{\mathrm{2}}{\mathrm{7}}×\frac{\mathrm{2}}{\mathrm{3}}{y}^{\mathrm{3}/\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{3}}×\frac{\mathrm{2}}{\mathrm{7}}{y}^{\mathrm{7}/\mathrm{2}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\:\frac{\mathrm{8}}{\mathrm{21}} \\ $$
Commented by mathmax by abdo last updated on 25/Sep/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$