calculate-0-1-2x-2-1-x-2-2x-5-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 62419 by mathmax by abdo last updated on 20/Jun/19 calculate∫01(2x2−1)x2−2x+5dx Commented by mathmax by abdo last updated on 21/Jun/19 letI=∫01(2x2−1)x2−2x+5dxwehavex2−2x+5=x2−2x+1+4=(x−1)2+4letusethechangement(x−1)=2sh(t)⇒x=2sh(t)+1I=∫argsh(−12)0{2(2sh(t)+1)2−1}2ch(t)2ch(t)dt=4∫ln(−12+54)0{2(4sh2t+4sht+1)−1}ch2(t)dt=4∫ln(−1+52)0{8sh2t+8sh(t)+1}ch2tdt=32∫ln(−1+52)0sh2tch2tdt+32∫ln(−1+52)0sh(t)ch2(t)dt+4∫ln(−1+52)0ch2(t)dt∫ln(−1+52)0(shtcht)2dt=14∫ln(−1+52)0sh(2t)dt=18[ch(2t)]ln(−1+52)0=116[e2t+e−2t]ln(−1+52)0=116{2−(−1+52)2−1(−1+52)2}∫ln(−1+52)0sh(t)ch2(t)dt=[13ch3t]ln(−1+52)0=13[(et+e−t2)3]ln(−1+52)0=124{8−{(−1+52)−1−1+52}3}.∫ln(−1+52)0ch2tdt=12∫ln(−1+52)0(1+ch(2t))dt=−12ln(−1+52)+14[sh(2t)]ln(−1+52)0=−12ln(−1+52)+18[e2t−e−2t]ln(−1+52)0=−12ln(−1+52)+18{−(−1+52)2+1(−1+52)2}thevalueofIisknown. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-127952Next Next post: let-u-n-x-1-n-x-n-n-1-dt-t-x-with-x-1-2-1-prove-that-0-u-n-x-1-n-x-1-n-1-x-n-gt-0-2-prove-that-u-n-x-converges-let-n-1-u-n-1-3-find-n-1-u-n-x-i Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.