Menu Close

calculate-0-1-3-x-2-1-x-3-dx-




Question Number 50416 by Abdo msup. last updated on 16/Dec/18
calculate ∫_0 ^1 ^3 (√(x^2 (1−x^3 )))dx
calculate013x2(1x3)dx
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Dec/18
∫_0 ^1 {x^2 (1−x^3 )}^(1/3) dx  t=x^3    dt=3x^2 dx  (dt/(3(t)^(2/3) ))=dx  ∫_0 ^1 (({t^(2/3) (1−t)}^(1/3) ×(dt/(3t^(2/3) )))/1)  (1/3)∫_0 ^1 t^((2/9)−(2/3)) (1−t)^(1/3) dt  (1/3)∫_0 ^1 t^((2−6)/9) (1−t)^(1/3) dt  wait now use beta function...  (1/3)∫t^((5/9)−1) (1−t)^((4/3)−1) dt  formula  ∫_0 ^1 x^(m−1) (1−x)^(n−1) dx=β(m,n)  =((⌈(m)⌈(n))/(⌈(m+n)))  answer is =(1/3)×((⌈((5/9))⌈((4/3)))/(⌈((5/9)+(4/3))))  =(1/3)×((⌈((5/9))⌈((4/3)))/(⌈(((17)/9))))  wait busy...
01{x2(1x3)}13dxt=x3dt=3x2dxdt3(t)23=dx01{t23(1t)}13×dt3t2311301t2923(1t)13dt1301t269(1t)13dtwaitnowusebetafunction13t591(1t)431dtformula01xm1(1x)n1dx=β(m,n)=(m)(n)(m+n)answeris=13×(59)(43)(59+43)=13×(59)(43)(179)waitbusy

Leave a Reply

Your email address will not be published. Required fields are marked *