Question Number 34227 by abdo imad last updated on 03/May/18
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\left({x}^{\mathrm{2}} \right){dx}\: \\ $$
Commented by math khazana by abdo last updated on 04/May/18
$${let}\:{put}\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{arctan}\left({x}^{\mathrm{2}} \right){dx}\:{by}\:{parts}\:{u}^{'} =\mathrm{1}\:{and}\: \\ $$$${v}={arctan}\left({x}^{\mathrm{2}} \right)\:\Rightarrow\:{I}\:=\:\left[{x}\:{arctan}\left({x}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$$$=\frac{\pi}{\mathrm{4}}\:−\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx}\:{let}\:{decompose} \\ $$$${F}\left({x}\right)=\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} }\:=\:\frac{{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \:−\mathrm{2}{x}^{\mathrm{2}} }\:=\:\frac{{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +\sqrt{\mathrm{2}}{x}\:+\mathrm{1}\right)} \\ $$$${F}\left({x}\right)=\:\frac{{ax}+{b}}{{x}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}{x}+\mathrm{1}\:}\:+\frac{{cx}+{d}}{{x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}\:+\mathrm{1}} \\ $$$${F}\left(−{x}\right)\:={F}\left({x}\right)\:\Rightarrow\:{c}=−{a}\:{and}\:{d}={b}\:\Rightarrow \\ $$$${F}\left({x}\right)\:=\:\frac{{ax}\:+{b}}{{x}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}{x}\:+\mathrm{1}}\:+\frac{−{ax}+{b}}{{x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}\:+\mathrm{1}} \\ $$$${F}\left(\mathrm{0}\right)=\mathrm{0}\:=\mathrm{2}{b}\:\Rightarrow{b}=\mathrm{0}\:\Rightarrow \\ $$$${F}\left({x}\right)=\:\:\frac{{ax}}{{x}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}{x}\:+\mathrm{1}}\:−\frac{{ax}}{{x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}+\mathrm{1}} \\ $$$${F}\left(\mathrm{1}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:=\:\frac{{a}}{\mathrm{2}−\sqrt{\mathrm{2}}}\:−\frac{{a}}{\mathrm{2}+\sqrt{\mathrm{2}}}\:=\left(\frac{\mathrm{2}+\sqrt{\mathrm{2}}−\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{2}}\right){a} \\ $$$$=\sqrt{\mathrm{2}}\:{a}\:\Rightarrow{a}=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\Rightarrow \\ $$$${F}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left(\:\:\frac{{x}}{{x}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}{x}+\mathrm{1}}\:−\frac{{x}}{{x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}+\mathrm{1}}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{x}}{{x}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}{x}+\mathrm{1}}{dx}\:−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}}{{x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}+\mathrm{1}}{dx} \\ $$
Commented by math khazana by abdo last updated on 04/May/18
$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{x}}{{x}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}{x}\:+\mathrm{1}}{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{2}{x}−\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{2}}}{{x}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}{x}\:+\mathrm{1}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\left({x}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}{x}+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}{x}\:+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)\:\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}\:{x}+\mathrm{1}}\:\:{but} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}\:{x}+\mathrm{1}}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:−\mathrm{2}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}{x}\:+\frac{\mathrm{1}}{\mathrm{4}}\:+\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{dx}}{\left({x}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}}\:=_{{x}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{t}} \:\:\:\int_{−\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{3}}}} ^{\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left(\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)} \:\:\:\:\:\frac{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{dt}}{\frac{\mathrm{3}}{\mathrm{4}}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{4}}{\mathrm{3}}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\int_{−\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{3}}}} ^{\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\:−\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{3}}}} \:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\:\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\:\left({arctan}\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}−\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{3}}}\right)\:+{arctan}\left(\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{3}}}\right)\right)\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{x}}{{x}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}{x}\:+\mathrm{1}}{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}−\sqrt{\mathrm{2}}\right) \\ $$$$+\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\:\left(\:{arctan}\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\:−\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{3}}}\right)\:+{arctan}\left(\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{3}}}\right)\right)\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{x}}{{x}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{x}\:+\mathrm{1}}{dx}\:=_{{x}=−{t}} \:\:\int_{\mathrm{0}} ^{−\mathrm{1}} \:\:\:\frac{{tdt}}{{t}^{\mathrm{2}} \:−\sqrt{\mathrm{2}}\:{t}\:+\mathrm{1}} \\ $$$${and}\:{this}\:{caculated}\:{above}…. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/May/18
$${let}\:{I}=\int{tan}^{−\mathrm{1}} \left({x}^{\mathrm{2}} \right){dx} \\ $$$$={tan}^{−\mathrm{1}} \left({x}^{\mathrm{2}} \right)\int{dx}−\int\left[\frac{{d}}{{dx}}{tan}^{−\mathrm{1}} {x}^{\mathrm{2}.} .\int{dx}\right]{dx} \\ $$$$={xtan}^{−\mathrm{1}\:} \left({x}^{\mathrm{2}} \right)−\int\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{4}} \:}.{xdx} \\ $$$$={xtan}^{−\mathrm{1}} {x}−\mathrm{2}\int\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$$${i}\:{have}\:{alredy}\:{solved}\:\int\frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$$${pls}\:{co}−{relate} \\ $$