Menu Close

calculate-0-1-arctan-x-2-x-dx-




Question Number 55994 by maxmathsup by imad last updated on 07/Mar/19
calculate  ∫_0 ^1 arctan(x^2 −x)dx
calculate01arctan(x2x)dx
Answered by MJS last updated on 08/Mar/19
∫arctan (x^2 −x) dx=       [t=x^2 −x → dx=(dt/(2x−1))]  =∫((arctan t)/( (√(4t+1))))dt=  =((√(4t+1))/2)arctan t −(1/2)∫((√(4t+1))/(t^2 +1))dt  −(1/2)∫((√(4t+1))/(t^2 +1))dt=       [u=(√(4t+1)) → dt=((√(4t+1))/2)du]  =−4∫(u^2 /(u^4 −2u^2 +17))du=  =−4∫(u^2 /((u^2 −(√(2+2(√(17))))u+(√(17)))(u^2 +(√(2+2(√(17))))u+(√(17)))))du=       [a=(√(2+2(√(17)))); b=(√(17))]  =−4∫(u^2 /((u^2 −au+b)(u^2 +au+b)))du=  =(2/a)(∫(u/(u^2 +au+b))du−∫(u/(u^2 −au+b))du)=  =(1/a)ln ((u^2 +au+b)/(u^2 −au+b)) −(2/( (√(4b−a^2 ))))(arctan ((2u−a)/( (√(4b−a^2 )))) +arctan ((2u+a)/( (√(4b−a^2 )))))  ...  ∫_0 ^1 arctan (x^2 −x) dx=  =((√(−2+2(√(17))))/4)ln ((5+(√(17))+(√(26+10(√(17)))))/8) −((√(2+2(√(17))))/2)arctan ((√(2+2(√(17))))/4) ≈  ≈−.164355
arctan(x2x)dx=[t=x2xdx=dt2x1]=arctant4t+1dt==4t+12arctant124t+1t2+1dt124t+1t2+1dt=[u=4t+1dt=4t+12du]=4u2u42u2+17du==4u2(u22+217u+17)(u2+2+217u+17)du=[a=2+217;b=17]=4u2(u2au+b)(u2+au+b)du==2a(uu2+au+bduuu2au+bdu)==1alnu2+au+bu2au+b24ba2(arctan2ua4ba2+arctan2u+a4ba2)10arctan(x2x)dx==2+2174ln5+17+26+101782+2172arctan2+2174.164355
Commented by turbo msup by abdo last updated on 08/Mar/19
thanks sir.
thankssir.

Leave a Reply

Your email address will not be published. Required fields are marked *