Menu Close

calculate-0-1-dt-1-t-2-3-




Question Number 40132 by maxmathsup by imad last updated on 16/Jul/18
calculate ∫_0 ^1    (dt/((1+t^2 )^3 ))
calculate01dt(1+t2)3
Commented by maxmathsup by imad last updated on 21/Jul/18
let I  = ∫_0 ^1      (dt/((1+t^2 )^2 ))  I = ∫_0 ^1   ((1+t^2 )/((1+t^2 )^3 ))dt = ∫_0 ^1    (dt/((1+t^2 )^3 ))  +∫_0 ^1    (t^2 /((1+t^2 )^3 ))dt⇒  ∫_0 ^1     (dt/((1+t^2 )^3 )) = I −∫_0 ^1     (t^2 /((1+t^2 )^3 ))  changement t=tanx give  I = ∫_0 ^(π/4)   (((1+tan^2 x)dx)/((1+tan^2 x)^2 )) = ∫_0 ^(π/4)   (dx/(1+tan^2 x)) =∫_0 ^(π/4)  cos^2 xdx  =∫_0 ^(π/4)   ((1+cos(2x))/2)dx =(π/8) +(1/4)[sin(2x)]_0 ^(π/4)  =(π/8) +(1/4) also by parts  ∫_0 ^1 t (1+t^2 )^(−3) t dt  =−(1/4) ∫_0 ^1 −4t(1+t^2 )^(−3)  t dt  =−(1/4){[ (1+t^2 )^(−2)  t]_0 ^1   −∫_0 ^1     (dt/((1+t^2 )^2 ))}  =−(1/4) 2^(−2)   +(1/4)((π/8) +(1/4)) = (π/(32)) +(1/(16)) −(1/(16)) =(π/(32)) ⇒  ∫_0 ^1     (dt/((1+t^2 )^3 )) =(π/8) +(1/4) −(π/(32)) =((3π)/(32)) +(1/4) .
letI=01dt(1+t2)2I=011+t2(1+t2)3dt=01dt(1+t2)3+01t2(1+t2)3dt01dt(1+t2)3=I01t2(1+t2)3changementt=tanxgiveI=0π4(1+tan2x)dx(1+tan2x)2=0π4dx1+tan2x=0π4cos2xdx=0π41+cos(2x)2dx=π8+14[sin(2x)]0π4=π8+14alsobyparts01t(1+t2)3tdt=14014t(1+t2)3tdt=14{[(1+t2)2t]0101dt(1+t2)2}=1422+14(π8+14)=π32+116116=π3201dt(1+t2)3=π8+14π32=3π32+14.

Leave a Reply

Your email address will not be published. Required fields are marked *