calculate-0-1-dt-1-t-2-3- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 40132 by maxmathsup by imad last updated on 16/Jul/18 calculate∫01dt(1+t2)3 Commented by maxmathsup by imad last updated on 21/Jul/18 letI=∫01dt(1+t2)2I=∫011+t2(1+t2)3dt=∫01dt(1+t2)3+∫01t2(1+t2)3dt⇒∫01dt(1+t2)3=I−∫01t2(1+t2)3changementt=tanxgiveI=∫0π4(1+tan2x)dx(1+tan2x)2=∫0π4dx1+tan2x=∫0π4cos2xdx=∫0π41+cos(2x)2dx=π8+14[sin(2x)]0π4=π8+14alsobyparts∫01t(1+t2)−3tdt=−14∫01−4t(1+t2)−3tdt=−14{[(1+t2)−2t]01−∫01dt(1+t2)2}=−142−2+14(π8+14)=π32+116−116=π32⇒∫01dt(1+t2)3=π8+14−π32=3π32+14. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-the-value-of-I-0-1-1-x-4-1-x-6-dx-Next Next post: calculate-1-2-x-3-1-x-4-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.