Menu Close

calculate-0-1-dx-chx-




Question Number 31515 by abdo imad last updated on 09/Mar/18
calculate ∫_0 ^1    (dx/(chx)) .
calculate01dxchx.
Commented by abdo imad last updated on 10/Mar/18
I= ∫_0 ^1   (dx/((e^x  +e^(−x) )/2))=2 ∫_0 ^1     (dx/(e^x  +e^(−x) )) the ch .e^x =t give  I=2 ∫_1 ^e      (1/(t +(1/t))) (dt/t)= 2∫_1 ^e   (dt/(t^2 +1))=2[arctant]_1 ^e  =2 arctane −(π/2) .
I=01dxex+ex2=201dxex+exthech.ex=tgiveI=21e1t+1tdtt=21edtt2+1=2[arctant]1e=2arctaneπ2.
Answered by sma3l2996 last updated on 10/Mar/18
I=∫_0 ^1 (dx/(cosh(x)))  t=tanh(x/2)⇒2dt=(1−(tanh(x/2))^2 )dx  cosh(x)=2cosh^2 (x/2)−1=(2/(1−tanh^2 (x/2)))−1  cosh(x)=((1+tanh^2 (x/2))/(1−tanh^2 (x/2)))=((1+t^2 )/(1−t^2 ))  I=∫_0 ^(tanh(1/2)) ((1−t^2 )/(1+t^2 ))×(((2dt)/(1−t^2 )))=2∫_0 ^(tanh(1/2)) (dt/(1+t^2 ))  I=2[tan^(−1) (t)]_0 ^(tanh(1/2))   I=2tan^(−1) (tanh(1/2))
I=01dxcosh(x)t=tanh(x/2)2dt=(1(tanh(x/2))2)dxcosh(x)=2cosh2(x/2)1=21tanh2(x/2)1cosh(x)=1+tanh2(x/2)1tanh2(x/2)=1+t21t2I=0tanh(1/2)1t21+t2×(2dt1t2)=20tanh(1/2)dt1+t2I=2[tan1(t)]0tanh(1/2)I=2tan1(tanh(1/2))

Leave a Reply

Your email address will not be published. Required fields are marked *