Question Number 31515 by abdo imad last updated on 09/Mar/18
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{{chx}}\:. \\ $$
Commented by abdo imad last updated on 10/Mar/18
$${I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{\frac{{e}^{{x}} \:+{e}^{−{x}} }{\mathrm{2}}}=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{{e}^{{x}} \:+{e}^{−{x}} }\:{the}\:{ch}\:.{e}^{{x}} ={t}\:{give} \\ $$$${I}=\mathrm{2}\:\int_{\mathrm{1}} ^{{e}} \:\:\:\:\:\frac{\mathrm{1}}{{t}\:+\frac{\mathrm{1}}{{t}}}\:\frac{{dt}}{{t}}=\:\mathrm{2}\int_{\mathrm{1}} ^{{e}} \:\:\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}=\mathrm{2}\left[{arctant}\right]_{\mathrm{1}} ^{{e}} \:=\mathrm{2}\:{arctane}\:−\frac{\pi}{\mathrm{2}}\:. \\ $$
Answered by sma3l2996 last updated on 10/Mar/18
$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{{cosh}\left({x}\right)} \\ $$$${t}={tanh}\left({x}/\mathrm{2}\right)\Rightarrow\mathrm{2}{dt}=\left(\mathrm{1}−\left({tanh}\left({x}/\mathrm{2}\right)\right)^{\mathrm{2}} \right){dx} \\ $$$${cosh}\left({x}\right)=\mathrm{2}{cosh}^{\mathrm{2}} \left({x}/\mathrm{2}\right)−\mathrm{1}=\frac{\mathrm{2}}{\mathrm{1}−{tanh}^{\mathrm{2}} \left({x}/\mathrm{2}\right)}−\mathrm{1} \\ $$$${cosh}\left({x}\right)=\frac{\mathrm{1}+{tanh}^{\mathrm{2}} \left({x}/\mathrm{2}\right)}{\mathrm{1}−{tanh}^{\mathrm{2}} \left({x}/\mathrm{2}\right)}=\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$$${I}=\int_{\mathrm{0}} ^{{tanh}\left(\mathrm{1}/\mathrm{2}\right)} \frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }×\left(\frac{\mathrm{2}{dt}}{\mathrm{1}−{t}^{\mathrm{2}} }\right)=\mathrm{2}\int_{\mathrm{0}} ^{{tanh}\left(\mathrm{1}/\mathrm{2}\right)} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${I}=\mathrm{2}\left[{tan}^{−\mathrm{1}} \left({t}\right)\right]_{\mathrm{0}} ^{{tanh}\left(\mathrm{1}/\mathrm{2}\right)} \\ $$$${I}=\mathrm{2}{tan}^{−\mathrm{1}} \left({tanh}\left(\mathrm{1}/\mathrm{2}\right)\right) \\ $$